Skip to main content
Log in

Detonation Spraying of a Cermet Coating to Improve the Surface Properties of Tool Steel Parts Produced by the Selective Laser Melting Process

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this study, a novel attempt was made to deposit 86WC-10Co-4Cr cermet layer on 1.2709 tool steel substrate prepared by selective laser melting (SLM) process using detonation spraying method. The laser power of 350 W, scan speed of 25 mm/s, hatch spacing of 0.15 mm, and layer thickness of 50 µm were used to fabricate samples at 45° build orientation. The calculated volumetric energy density for fabricating the samples was 1867 J/mm3. The SLM printed samples were annealed and air cooled at 500 °C in a box furnace with a dwell time of 6 h. The average particle size of the powder measured before and after the ball milling process was 237.49 and 43.06 μm, respectively. A coating thickness of 100 μm was targeted using the detonation spraying process. An average spray loss of 13% was observed during cermet coating. The results were compared between the as-built specimen, the heat treated specimen and the 86WC-10Co-4Cr coated specimen. The average Vickers microhardness of the coated sample was found to be 81.04 and 48.96% superior to the as-built and heat treated samples. The average contact angles measured from the as-built, heat treated and coated samples were 82.5°, 64° and 93.9°, respectively, indicating the superior hydrophobic surface in the coated sample. The coated sample offered reduced abrasive wear, improved corrosion inhibition, and better 2D and 3D surface roughness properties than the as-built and heat treated samples, which promises its further use in cermet-based rapid tooling applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

SLM:

Selective laser melting

WC:

Tungsten carbide

Co:

Cobalt

Cr:

Chromium

VED:

Volumetric energy density

HVOF:

High velocity oxygen fuel

CAD:

Computer aided design

STL:

Standard triangulation language

SEM:

Scanning electron microscope

XRD:

X-ray diffraction

WCA:

Water contact angle

FWHM:

Full width-half maximum

EDS:

Energy-dispersive x-ray spectroscopy

ASTM:

American Society for Testing and Materials

ISO:

International Organization for Standardization

Rp:

Maximum peak height of the roughness profile.

Rv:

Maximum valley depth of the roughness profile.

Rz:

Maximum height of roughness profile.

Rc:

Mean height of the roughness profile elements.

Rt:

Total height of roughness profile.

Ra:

Arithmetic mean deviation of the roughness profile.

Rq:

Root-mean-square (RMS) deviation of the roughness profile.

Rsk:

Skewness of the roughness profile.

Sq:

Root mean square height

Ssk:

Skewness

Sku:

Kurtosis

Sp:

Maximum peak height

Sv:

Maximum pit height

Sz:

Maximum height

Sa:

Arithmetic mean height

References

  1. L. Kučerová, K. Burdová, Š Jeníček, and I. Chena, Effect of Solution Annealing and Precipitation Hardening at 250 °C-550 °C on Microstructure and Mechanical Properties of Additively Manufactured 1.2709 Maraging Steel, Mat. Sci. Eng. A, 2021, 814, p 141195.

    Article  Google Scholar 

  2. K.A. Mumtaz, P. Erasenthiran, and N. Hopkinson, High Density Selective Laser Melting of Waspaloy®, J. Mater. Process. Technol., 2008, 195(1-3), p 77-87.

    Article  CAS  Google Scholar 

  3. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing, Review of Selective Laser Melting: Materials and Applications, Appl. Phys. Rev., 2015, 2(4).

  4. R. Casati, J. Lemke, C. Masneri, and M.V. Politecnico, Influence of Heat Treatment Condition on Properties of 1. 2709 Maraging Steel Fabricated by Selective Laser Melting, n.d., p 2709.

  5. J. Piekło and A. Garbacz-Klempka, Use of Maraging Steel 1.2709 for Implementing Parts of Pressure Mold Devices with Conformal Cooling System, Materials, 2020, 13(23), p 1-22.

    Article  Google Scholar 

  6. R. Wrobel and B. Mecrow, Review of AM for Electrical Machines, 2019 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), IEEE, n.d., 1, p 15-22.

  7. G. Yang, Y. Xie, S. Zhao, L. Qin, X. Wang, and B. Wu, Quality Control: Internal Defects Formation Mechanism of Selective Laser Melting Based on Laser-Powder-Melt Pool Interaction: A Review, Chin. J. Mech. Eng. Addit. Manuf. Front., 2022, 1(3), p 100037. https://doi.org/10.1016/j.cjmeam.2022.100037

    Article  Google Scholar 

  8. M. Zhao, C. Duan, and X. Luo, Metallurgical Defect Behavior, Microstructure Evolution, and Underlying Thermal Mechanisms of Metallic Parts Fabricated by Selective Laser Melting Additive Manufacturing, J. Laser Appl. Laser Inst. Am., 2020, 32(2), p 022012.

    Article  CAS  Google Scholar 

  9. M. Mashlan, F. Linderhof, M. Davidova, H. Kubickova, and E. Zemtsova, Changes of Phase Composition of Maraging Steel 1.2709 during Selective Laser Melting, Hyperfine Interact., 2019, 241(1), p 1-8.

    Google Scholar 

  10. S. Cooke, K. Ahmadi, S. Willerth, and R. Herring, Metal Additive Manufacturing: Technology, Metallurgy and Modelling, J. Manuf. Process., 2020, 57, p 978-1003. https://doi.org/10.1016/j.jmapro.2020.07.025

    Article  Google Scholar 

  11. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, The Metallurgy and Processing Science of Metal Additive Manufacturing, Int. Mater. Rev., 2016, 61(5), p 315-360.

    Article  CAS  Google Scholar 

  12. B. Zhang, Y. Li, and Q. Bai, Defect Formation Mechanisms in Selective Laser Melting: A Review, Chin J Mech Eng, 2017, 30(3), p 515-527. (English Edition)

    Article  Google Scholar 

  13. J. Li, J. Hu, L. Cao, S. Wang, H. Liu, and Q. Zhou, Multi-Objective Process Parameters Optimization of SLM Using the Ensemble of Metamodels, J. Manuf. Process., 2021, 68(PA), p 198-209. https://doi.org/10.1016/j.jmapro.2021.05.038

    Article  Google Scholar 

  14. H. Ali, L. Ma, H. Ghadbeigi, and K. Mumtaz, In-Situ Residual Stress Reduction, Martensitic Decomposition and Mechanical Properties Enhancement through High Temperature Powder Bed Pre-Heating of Selective Laser Melted Ti6Al4V, Mater. Sci. Eng. A, 2017, 695, p 211-220.

    Article  CAS  Google Scholar 

  15. D. Buchbinder, W. Meiners, N. Pirch, K. Wissenbach, and J. Schrage, Investigation on Reducing Distortion by Preheating during Manufacture of Aluminum Components Using Selective Laser Melting, J. Laser Appl., 2014, 26(1), p 012004.

    Article  Google Scholar 

  16. C. Turk, H. Zunko, C. Aumayr, H. Leitner, and M. Kapp, Advances in Maraging Steels for Additive Manufacturing, BHM Berg- Huettenmaenn. Monatsh., 2019, 164(3), p 112-116.

    Article  CAS  Google Scholar 

  17. Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, and S.B. Tor, Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review, Mater. Des., 2018, 139, p 565-586. https://doi.org/10.1016/j.matdes.2017.11.021

    Article  CAS  Google Scholar 

  18. H. Huang, T. Zhang, C. Chen, S.R.E. Hosseini, J. Zhang, and K. Zhou, Anisotropy in the Tensile Properties of a Selective Laser Melted Ti-5Al-5Mo-5V-1Cr-1Fe Alloy during Aging Treatment, Materials, 2022, 15(16), p 5493.

    Article  CAS  Google Scholar 

  19. P. Kumaravelu, S. Arulvel, and J. Kandasamy, Surface Coatings and Surface Modification Techniques for Additive Manufacturing BT—Innovations in Additive Manufacturing, M.A. Khan and J.T.W. Jappes, Eds., Springer International Publishing, Cham, 2022, p 221-238. https://doi.org/10.1007/978-3-030-89401-6_10

  20. G.S. Sharma, M. Sugavaneswaran, U. Vijayalakshmi, and R. Prakash, Influence of γ-Alumina Coating on Surface Properties of Direct Metal Laser Sintered 316L Stainless Steel, Ceram. Int., 2019, 45(10), p 13456-13463. https://doi.org/10.1016/j.ceramint.2019.04.046

    Article  CAS  Google Scholar 

  21. A. Madhan Kumar and N. Rajendran, Influence of Zirconia Nanoparticles on the Surface and Electrochemical Behaviour of Polypyrrole Nanocomposite Coated 316L SS in Simulated Body Fluid, Surf. Coat. Technol., 2012, 213, p 155-166. https://doi.org/10.1016/j.surfcoat.2012.10.039

    Article  CAS  Google Scholar 

  22. H. Frank, M. Ambos, S. Lutze, and M. Scholz, Improvement of the Properties of Additively Manufactured Steel Parts by Combination of Heat Treatment and Hard Coatings, IOP Conf. Ser. Mater. Sci. Eng., 2021, 1147(1), p 012001.

    Article  CAS  Google Scholar 

  23. J. Kübarsepp and K. Juhani, Cermets with Fe-Alloy Binder: A Review, Int. J. Refract. Met. Hard Mater., 2020, 92, p 105290. https://doi.org/10.1016/j.ijrmhm.2020.105290

    Article  CAS  Google Scholar 

  24. K. Torkashvand, S. Joshi, and M. Gupta, Advances in Thermally Sprayed WC-Based Wear-Resistant Coatings: Co-Free Binders, Process Routes and Tribological Behavior, J. Therm. Spray Technol., 2022, 31(3), p 342-377. https://doi.org/10.1007/s11666-022-01358-4

    Article  CAS  Google Scholar 

  25. G. Bolelli, L.M. Berger, T. Börner, H. Koivuluoto, L. Lusvarghi, C. Lyphout, N. Markocsan, V. Matikainen, P. Nylén, P. Sassatelli, R. Trache, and P. Vuoristo, Tribology of HVOF- and HVAF-Sprayed WC-10Co4Cr Hardmetal Coatings: A Comparative Assessment, Surf. Coat. Technol., 2015, 265, p 125-144. https://doi.org/10.1016/j.surfcoat.2015.01.048

    Article  CAS  Google Scholar 

  26. R. Ahmed, O. Ali, C.C. Berndt, and A. Fardan, Sliding Wear of Conventional and Suspension Sprayed Nanocomposite WC-Co Coatings: An Invited Review, J. Therm. Spray Technol., 2021, 30(4), p 800-861. https://doi.org/10.1007/s11666-021-01185-z

    Article  CAS  Google Scholar 

  27. B. Zhang, L. Zhu, H. Liao, and C. Coddet, Improvement of Surface Properties of SLM Parts by Atmospheric Plasma Spraying Coating, Appl. Surf. Sci., 2012, 263, p 777-782.

    Article  CAS  Google Scholar 

  28. M. Frankiewicz, E. Chlebus, and K. Kobiela, APS Sprayed Coatings onto the Selective Laser Melted Substrates, Przegląd Spawalnictwa Weld. Technol. Rev., 2012, 84(9), p 27-30.

    CAS  Google Scholar 

  29. W. Tillmann, L. Hagen, C. Schaak, J. Liß, M. Schaper, K.P. Hoyer, M.E. Aydinöz, and K.U. Garthe, Adhesion of HVOF-Sprayed WC-Co Coatings on 316L Substrates Processed by SLM, J. Therm. Spray Technol., 2020, 29(6), p 1396-1409.

    Article  CAS  Google Scholar 

  30. P. Suresh Babu, P. Chanikya Rao, A. Jyothirmayi, P. Sudharshan Phani, L. Rama Krishna, and D. Srinivasa Rao, Evaluation of Microstructure, Property and Performance of Detonation Sprayed WC-(W, Cr)2C-Ni Coatings, Surf. Coat. Technol., 2018, 335, p 345-354. https://doi.org/10.1016/j.surfcoat.2017.12.055

    Article  CAS  Google Scholar 

  31. K. Monkova, I. Zetkova, L. Kučerová, M. Zetek, P. Monka, and M. Daňa, Study of 3D Printing Direction and Effects of Heat Treatment on Mechanical Properties of MS1 Maraging Steel, Arch. Appl. Mech., 2019, 89(5), p 791-804.

    Article  Google Scholar 

  32. U. Scipioni Bertoli, A.J. Wolfer, M.J. Matthews, J.P.R. Delplanque, and J.M. Schoenung, On the Limitations of Volumetric Energy Density as a Design Parameter for Selective Laser Melting, Mater. Des., 2017, 113, p 331-340. https://doi.org/10.1016/j.matdes.2016.10.037

    Article  CAS  Google Scholar 

  33. P. Ferro, R. Meneghello, G. Savio, and F. Berto, A Modified Volumetric Energy Density-Based Approach for Porosity Assessment in Additive Manufacturing Process Design, Int. J. Adv. Manuf. Technol., 2020, 110(7-8), p 1911-1921.

    Article  Google Scholar 

  34. L. Kučerová, K. Burdová, Š Jeníček, and J. Volkmannová, Microstructure and Mechanical Properties of 3D Printed Tool Steel after Various Precipitation Hardening Treatments, Manufacturing Technology, 2022, 22(2), p 185-191.

    Article  Google Scholar 

  35. S.B. Pitchuka, B. Basu, and G. Sundararajan, A Comparison of Mechanical and Tribological Behavior of Nanostructured and Conventional Wc-12co Detonation-Sprayed Coatings, J. Therm. Spray Technol., 2013, 22(4), p 478-490.

    Article  CAS  Google Scholar 

  36. H. Saini, D. Kumar, and V.N. Shukla, Hot Corrosion Behaviour of Nanostructured Cermet Based Coatings Deposited by Different Thermal Spray Techniques: A Review, Mater. Today Proc., 2017, 4(2), p 541-545. https://doi.org/10.1016/j.matpr.2017.01.055

    Article  Google Scholar 

  37. S. Rao and M. Palle, Effect of D-Gun Sprayed Ceramic Coatings on Aluminum Material to Review Hardness and Corrosion Properties Effect of D-Gun Sprayed Ceramic Coatings on Aluminum Material to Review Hardness and Corrosion Properties. Int. J. Curr. Eng. Technol. 2017, p 0-4.

Download references

Author information

Authors and Affiliations

Authors

Contributions

N.S: Conceptualization, Methodology, Investigation, Writing–Original Draft, Writing—Revised Draft. G.A: Resources, Validation, Formal analysis, Supervision, Project administration.

Corresponding author

Correspondence to N. Sathishkumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathishkumar, N., Arumaikkannu, G. Detonation Spraying of a Cermet Coating to Improve the Surface Properties of Tool Steel Parts Produced by the Selective Laser Melting Process. J Therm Spray Tech 32, 2439–2459 (2023). https://doi.org/10.1007/s11666-023-01651-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-023-01651-w

Keywords

Navigation