Skip to main content
Log in

Influence of Powder Heat Treatment on the Microstructure and Mechanical Properties of Cold Sprayed Ti-6Al-4V Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Ti-6Al-4V is widely used in the aerospace industry, however, Ti-6Al-4V repairs are challenging to perform via cold spray due to the material’s limited capacity for plastic deformation. To promote particle deformation, this study investigated the influence of Ti-6Al-4V powder heat treatment on the powder microstructure, cold spray deposition behavior, and, ultimately, on the coating microstructure and properties. Plasma-atomized Ti-6Al-4V powder was subjected to three different heat treatments (i.e., 540 °C for 5 h, 750 °C for 2 h, and 950 °C for 2.5 h) and subsequently deposited on Ti-6Al-4V substrates using a high-pressure cold spray system. Scanning electron microscopy revealed that the as-received microstructure was primarily characterized by a martensitic alpha microstructure. After low-temperature heat treatment (540 °C), the microstructure retained the original martensitic alpha microstructure. Intermediate heat treatment (750 °C) resulted in the formation of needle-like alpha and acicular alpha with fine beta precipitates. High-temperature treatment (950 °C) resulted in the formation of needle-like alpha, acicular alpha, and plate-like alpha with coarse and fine beta precipitates. The hardness of the powder increased after heat treating at 550 °C and 750 °C but decreased when treated at 950 °C. After cold spray deposition, particle interiors retained the as-processed powder microstructure while regions near particle boundaries exhibited either a featureless microstructure (as-received powder and low-temperature heat treatment) or elongated β (high-temperature heat treatment). With the exception of 750 °C powder heat treatment, all coatings were nearly dense (< 1% porosity). Ultimately the results showed that 950 °C heat treatments have the potential to improve powder deformation behavior and coating properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. B. Dutta, F.H.S. Froes, The additive manufacturing (AM) of titanium alloys, Titanium powder metallurgyed. (Elsevier, 2015) p. 447-468

  2. C. Widener, M. Carter, O. Ozdemir, R. Hrabe, B. Hoiland, T. Stamey, V. Champagne and T.J. Eden, Application of high-pressure cold spray for an internal bore repair of a navy valve actuator, J. Therm. Spray Technol., 2016, 25(1–2), p 193–201.

    Article  CAS  Google Scholar 

  3. R. Jones, N. Matthews, C. Rodopoulos, K. Cairns and S. Pitt, On the use of supersonic particle deposition to restore the structural integrity of damaged aircraft structures, Int. J. Fatigue, 2011, 33(9), p 1257–1267.

    Article  CAS  Google Scholar 

  4. V. Champagne and D. Helfritch, Critical assessment 11: structural repairs by cold spray, Mater. Sci. Technol., 2015, 31(6), p 627–634.

    Article  CAS  Google Scholar 

  5. A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano and M. Dao, Cold spray coating: review of material systems and future perspectives, Surf. Eng., 2014, 30(6), p 369–395.

    Article  CAS  Google Scholar 

  6. M. Rokni, C. Widener, G. Crawford and M. West, An investigation into microstructure and mechanical properties of cold sprayed 7075 Al deposition, Mater. Sci. Eng., A, 2015, 625, p 19–27.

    Article  CAS  Google Scholar 

  7. H. Assadi, H. Kreye, F. Gärtner and T. Klassen, Cold spraying–A materials perspective, Acta Mater., 2016, 116, p 382–407.

    Article  CAS  Google Scholar 

  8. F. Gärtner, T. Stoltenhoff, J. Voyer, H. Kreye, S. Riekehr and M. Kocak, Mechanical properties of cold-sprayed and thermally sprayed copper coatings, Surf. Coat. Technol., 2006, 200(24), p 6770–6782.

    Article  Google Scholar 

  9. P.S. Phani, D.S. Rao, S. Joshi and G. Sundararajan, Effect of process parameters and heat treatments on properties of cold sprayed copper coatings, J. Therm. Spray Technol., 2007, 16(3), p 425–434.

    Article  CAS  Google Scholar 

  10. C. Borchers, F. Gärtner, T. Stoltenhoff and H. Kreye, Microstructural bonding features of cold sprayed face centered cubic metals, J. Appl. Phys., 2004, 96(8), p 4288–4292.

    Article  CAS  Google Scholar 

  11. D. Goldbaum, J.M. Shockley, R.R. Chromik, A. Rezaeian, S. Yue, J.-G. Legoux and E. Irissou, The effect of deposition conditions on adhesion strength of Ti and Ti6Al4V cold spray splats, J. Therm. Spray Technol., 2012, 21(2), p 288–303.

    Article  CAS  Google Scholar 

  12. M.V. Vidaller, A. List, F. Gaertner, T. Klassen, S. Dosta and J.M. Guilemany, Single impact bonding of cold sprayed Ti-6Al-4V powders on different substrates, J. Therm. Spray Technol., 2015, 24(4), p 644–658.

    Article  CAS  Google Scholar 

  13. A.W.-Y. Tan, W. Sun, A. Bhowmik, J.Y. Lek, I. Marinescu, F. Li, N.W. Khun, Z. Dong and E. Liu, Effect of coating thickness on microstructure, mechanical properties and fracture behaviour of cold sprayed Ti6Al4V coatings on Ti6Al4V substrates, Surf. Coat. Technol., 2018, 349, p 303–317.

    Article  CAS  Google Scholar 

  14. A.W.-Y. Tan, W. Sun, Y.P. Phang, M. Dai, I. Marinescu, Z. Dong and E. Liu, Effects of traverse scanning speed of spray nozzle on the microstructure and mechanical properties of cold-sprayed Ti6Al4V coatings, J. Therm. Spray Technol., 2017, 26(7), p 1484–1497.

    Article  CAS  Google Scholar 

  15. P. Vo, E. Irissou, J.-G. Legoux and S. Yue, Mechanical and microstructural characterization of cold-sprayed Ti-6Al-4V after heat treatment, J. Therm. Spray Technol., 2013, 22(6), p 954–964.

    Article  CAS  Google Scholar 

  16. W.Y. Li, C. Zhang, X. Guo, J. Xu, C.J. Li, H. Liao, C. Coddet and K.A. Khor, Ti and Ti-6Al-4V coatings by cold spraying and microstructure modification by heat treatment, Adv. Eng. Mater., 2007, 9(5), p 418–423.

    Article  CAS  Google Scholar 

  17. X.-T. Luo, Y.-K. Wei, Y. Wang and C.-J. Li, Microstructure and mechanical property of Ti and Ti6Al4V prepared by an in-situ shot peening assisted cold spraying, Mater. Des., 2015, 85, p 527–533.

    Article  CAS  Google Scholar 

  18. M. Garrido, P. Sirvent and P. Poza, Evaluation of mechanical properties of Ti6Al4V cold sprayed coatings, Surf. Eng., 2018, 34(5), p 399–406.

    Article  CAS  Google Scholar 

  19. D. Boruah, B. Robinson, T. London, H. Wu, H. de Villiers-Lovelock, P. McNutt, M. Doré and X. Zhang, Experimental evaluation of interfacial adhesion strength of cold sprayed Ti-6Al-4V thick coatings using an adhesive-free test method, Surf. Coat. Technol., 2020, 381, p 125130.

    Article  CAS  Google Scholar 

  20. V.S. Bhattiprolu, K.W. Johnson, O.C. Ozdemir and G.A. Crawford, Influence of feedstock powder and cold spray processing parameters on microstructure and mechanical properties of Ti-6Al-4V cold spray depositions, Surf. Coat. Technol., 2018, 335, p 1–12.

    Article  CAS  Google Scholar 

  21. H. Zhou, C. Li, H. Yang, X. Luo, G. Yang, W. Li, T. Hussain and C. Li, Pores structure change induced by heat treatment in cold-sprayed Ti6Al4V coating, J. Therm. Spray Technol., 2019, 28(6), p 1199–1211.

    Article  Google Scholar 

  22. V.S. Bhattiprolu, K.W. Johnson and G.A. Crawford, Influence of powder microstructure on the microstructural evolution of as-sprayed and heat treated cold-sprayed Ti-6Al-4V coatings, J. Therm. Spray Technol., 2019, 28(1–2), p 174–188.

    Article  CAS  Google Scholar 

  23. A. Birt, V. Champagne Jr., R. Sisson Jr. and D. Apelian, Microstructural analysis of Ti–6Al–4V powder for cold gas dynamic spray applications, Adv. Powder Technol., 2015, 26(5), p 1335–1347.

    Article  CAS  Google Scholar 

  24. A. Birt, V. Champagne, R. Sisson and D. Apelian, Microstructural analysis of cold-sprayed Ti-6Al-4V at the micro-and nano-scale, J. Therm. Spray Technol., 2015, 24(7), p 1277–1288.

    Article  CAS  Google Scholar 

  25. V.N.V. Munagala, V. Akinyi, P. Vo and R.R. Chromik, Influence of powder morphology and microstructure on the cold spray and mechanical properties of Ti6Al4V coatings, J. Therm. Spray Technol., 2018, 27(5), p 827–842.

    Article  CAS  Google Scholar 

  26. J.Y. Lek, A. Bhowmik, A.W.-Y. Tan, W. Sun, X. Song, W. Zhai, P.J. Buenconsejo, F. Li, E. Liu and Y.M. Lam, Understanding the microstructural evolution of cold sprayed Ti-6Al-4V coatings on Ti-6Al-4V substrates, Appl. Surf. Sci., 2018, 459, p 492–504.

    Article  CAS  Google Scholar 

  27. D. Goldbaum, R.R. Chromik, S. Yue, E. Irissou and J.-G. Legoux, Mechanical property mapping of cold sprayed Ti splats and coatings, J. Therm. Spray Technol., 2011, 20(3), p 486–496.

    Article  CAS  Google Scholar 

  28. D. Goldbaum, R.R. Chromik, N. Brodusch and R. Gauvin, Microstructure and mechanical properties of Ti cold-spray splats determined by electron channeling contrast imaging and nanoindentation mapping, Microsc. Microanal., 2015, 21(3), p 570.

    Article  CAS  Google Scholar 

  29. A. Sabard, H. de Villiers Lovelock and T. Hussain, Microstructural evolution in solution heat treatment of gas-atomized Al alloy (7075) powder for cold spray, J. Thermal Spray Technol., 2018, 27(1), p 145–158.

    Article  CAS  Google Scholar 

  30. A. Sabard, P. McNutt, H. Begg and T. Hussain, Cold spray deposition of solution heat treated, artificially aged and naturally aged Al 7075 powder, Surf. Coat. Technol., 2020, 385, p 125367.

    Article  CAS  Google Scholar 

  31. W.A. Story and L.N. Brewer, Heat treatment of gas-atomized powders for cold spray deposition, Metall. and Mater. Trans. A., 2018, 49(2), p 446–449.

    Article  CAS  Google Scholar 

  32. H. Chandler, Heat treater's guide: practices and procedures for nonferrous alloys, ASM Int. (1996)

  33. V.S. Bhattiprolu and G.A. Crawford, Microstructural evolution and mechanical behavior of heat treated Ti-6Al-4V powders, Metallogr. Microstruct. Anal., 2018, 7(6), p 761–768.

    Article  CAS  Google Scholar 

  34. W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 1992, 7(6), p 1564–1583.

    Article  CAS  Google Scholar 

  35. E. ASTM, 2109-01, Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings

  36. F. Kaschel, R. Vijayaraghavan, A. Shmeliov, E. McCarthy, M. Canavan, P. McNally, D. Dowling, V. Nicolosi, M. Celikin, Mechanism of stress relaxation and phase transformation in additively manufactured Ti-6Al-4V via in situ high temperature XRD and TEM analyses. Acta Materialia (2020)

  37. T. Schmidt, F. Gärtner, H. Assadi and H. Kreye, Development of a generalized parameter window for cold spray deposition, Acta Mater., 2006, 54(3), p 729–742.

    Article  CAS  Google Scholar 

  38. M. Smagorinski and P. Tsantrizos, Production of spherical titanium powder by plasma atomization, Adv. Powder. Metall. Part. Mater., 2002, 3, p 3–248.

    Google Scholar 

  39. T. Ahmed and H. Rack, Phase transformations during cooling in α+ β titanium alloys, Mater. Sci. Eng., A, 1998, 243(1–2), p 206–211.

    Article  Google Scholar 

  40. Z.Z. Fang, Sintering Adv. Mater. (Elsevier, 2010)

  41. W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia and M. Qian, Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition, Acta Mater., 2015, 85, p 74–84.

    Article  CAS  Google Scholar 

  42. B. Vrancken, L. Thijs, J.-P. Kruth and J. Van Humbeeck, Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties, J. Alloy. Compd., 2012, 541, p 177–185.

    Article  CAS  Google Scholar 

  43. R. Pederson, O. Babushkin, F. Skystedt and R. Warren, Use of high temperature X-ray diffractometry to study phase transitions and thermal expansion properties in Ti-6Al-4V, Mater. Sci. Technol., 2003, 19(11), p 1533–1538.

    Article  CAS  Google Scholar 

  44. J. Bray, Properties and selection: nonferrous alloys and special purpose materials, ASM Metals Handbook, 92, (1990)

  45. C. Lee and J. Kim, Microstructure of kinetic spray coatings: a review, J. Therm. Spray Technol., 2015, 24(4), p 592–610.

    Article  CAS  Google Scholar 

  46. M. Rokni, C. Widener and G. Crawford, Microstructural evolution of 7075 Al gas atomized powder and high-pressure cold sprayed deposition, Surf. Coat. Technol., 2014, 251, p 254–263.

    Article  CAS  Google Scholar 

  47. X.-T. Luo, C.-X. Li, F.-L. Shang, G.-J. Yang, Y.-Y. Wang and C.-J. Li, High velocity impact induced microstructure evolution during deposition of cold spray coatings: a review, Surf. Coat. Technol., 2014, 254, p 11–20.

    Article  CAS  Google Scholar 

  48. G. Bae, K. Kang, J.-J. Kim and C. Lee, Nanostructure formation and its effects on the mechanical properties of kinetic sprayed titanium coating, Mater. Sci. Eng., A, 2010, 527(23), p 6313–6319.

    Article  Google Scholar 

  49. K. Kim, M. Watanabe, J. Kawakita and S. Kuroda, Grain refinement in a single titanium powder particle impacted at high velocity, Scripta Mater., 2008, 59(7), p 768–771.

    Article  CAS  Google Scholar 

  50. F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena. (Elsevier, 2012)

  51. R. Ghelichi, S. Bagherifard, D. Mac Donald, M. Brochu, H. Jahed, B. Jodoin and M. Guagliano, Fatigue strength of Al alloy cold sprayed with nanocrystalline powders, Int. J. Fatigue, 2014, 65, p 51–57.

    Article  CAS  Google Scholar 

  52. D. Goldbaum, J. Ajaja, R.R. Chromik, W. Wong, S. Yue, E. Irissou and J.-G. Legoux, Mechanical behavior of Ti cold spray coatings determined by a multi-scale indentation method, Mater. Sci. Eng., A, 2011, 530, p 253–265.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by US Army Research, Development and Engineering Command under grant number W15QKN-16-C0094 and in part by the U.S. Army Research Laboratories under the grant number W911NF-19-20329. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Venkata Satish Bhattiprolu or Grant A. Crawford.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattiprolu, V.S., Johnson, K.W. & Crawford, G.A. Influence of Powder Heat Treatment on the Microstructure and Mechanical Properties of Cold Sprayed Ti-6Al-4V Coatings. J Therm Spray Tech 30, 2050–2068 (2021). https://doi.org/10.1007/s11666-021-01276-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-021-01276-x

Keywords

Navigation