Skip to main content
Log in

Heat Treatment of Gas-Atomized Powders for Cold Spray Deposition

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This communication demonstrates the efficacy of heat treatment on the improved deposition characteristics of aluminum alloy powders. A novel furnace was constructed for solutionizing of feedstock powders in an inert atmosphere while avoiding sintering. This furnace design achieved sufficiently high cooling rates to limit re-precipitation during powder cooling. Microscopy showed homogenization of the powder particle microstructures after heat treatment. Cold spray deposition efficiency with heat-treated powders substantially increased for the alloys AA2024, AA6061, and AA7075.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. V. Champagne: The Cold Spray Materials Deposition Process: Fundamentals and Applications, Woodhead Publishing Limited, USA, 2007, pp. 11-40.

    Book  Google Scholar 

  2. V. Champagne and D. Helfritch: Mater. Sci. Technol., 2015, vol. 31(6), pp. 627-634.

    Article  Google Scholar 

  3. J. Villafuerte: Modern cold spray: materials, process, and applications, Springer, Switzerland, 2015, pp. 73-106.

    Book  Google Scholar 

  4. M. Rokni, C. Widener, and G. Crawford: Surf. Coat. Technol., 2014, vol. 251, pp. 254-263.

    Article  Google Scholar 

  5. M. Rokni, C. Widener, and V. Champagne: J. Therm. Spray Technol., 2014, vol. 23(3), pp. 514-524.

    Article  Google Scholar 

  6. Metals Handbook Ninth Edition Volume 4: Heat Treating, ASM, Metals Park, OH, 1981.

  7. T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye: Acta Mater., 2006, vol. 54, pp. 729-742.

    Article  Google Scholar 

  8. Metals handbook ninth edition volume 7: powder metallurgy, ASM, Metals Park, OH, 1981.

  9. D. Helfritch and V. Champagne, Optimal Particle Size for the Cold Spray Process, Thermal Spray 2006: Proceedings of the International Thermal Spray Conference, ASM International, 2006.

  10. S. Ying, A.T. Nardi, and M.A. Kleck: High Temperature Fluidized Bed for Powder Treatment, US Patent 9,555,474 B2, 2017.

  11. M. Rokni, C. Widener, O. Ozdemir, and G. Crawford: Surf. Coat. Technol., 2017, vol. 309, pp. 641-650.

    Article  Google Scholar 

  12. V. Champagne, A. Nardi, and D. Cote: Intl. J. Powder Metall., 2015, vol. 51, pp. 37-47.

    Google Scholar 

  13. M. Rokni, C. Widener, V. Champagne, G. Crawford, and S. Nutt: Surf. Coat. Technol., 2017, vol. 310, pp. 278-285.

    Article  Google Scholar 

  14. M. Rokni, S. Nutt, C Widener, V. Champagne, and R. Hrabe: J. Therm. Spray Technol., 2017, vol. 26, pp. 1308-1355.

    Article  Google Scholar 

  15. M. Rokni, V. Widener, V. Champagne, and G. Crawford: Surf. Coat. Technol., 2015, vol. 276, pp. 305-315.

    Article  Google Scholar 

Download references

This work was funded in part by the Office of Naval Research, Sea-Based Aviation (Code 35), Grant N00014-15-1-2133.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke N. Brewer.

Additional information

Manuscript submitted September 16, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Story, W.A., Brewer, L.N. Heat Treatment of Gas-Atomized Powders for Cold Spray Deposition. Metall Mater Trans A 49, 446–449 (2018). https://doi.org/10.1007/s11661-017-4428-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4428-8

Navigation