Skip to main content
Log in

Temperature Profile in YPO4 Laden Plasma Jet and Its Evolution with Arc Current and Powder Loading

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

YPO4 is emerging as one of the fittest candidates for anti-corrosion thermal-barrier coatings suitable for aggressive environments at high temperature. The study presents an in situ investigation of the axial distribution of temperature in an YPO4 laden plasma jet using a modified Boltzmann plot technique that does not require Abel inversion and suited for jets involving instabilities and thermal non-equilibrium. Investigated operating current range (528 to 730 A) and powder flow rates (5.37 to 13.62 g/min) are found to ensure effective development of YPO4 coating. The nozzle exit temperature is found to vary from 11000 to 15000 K depending on arc current and powder loading. With no powder loading, the axial temperature distribution mostly follows a Gaussian-like profile at all set currents. With powder feeding, the profiles get transformed into nearly linear drop with local spiking of temperature at several axial locations. The tendency becomes more intense at higher arc current. Formation of shock trains in the jet with powder loading is suspected to be the underlying reason behind spatial spiking of temperature. Exhibited poor dependence of the nozzle exit temperature on powder loading at lower arc currents is found to get reversed at higher arc currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E. Sadeghi, N. Markocsan and S. Joshi, Advances in corrosion-resistant thermal spray coatings for renewable energy power plants: part II—effect of environment and outlook, J. Therm. Spray Technol., 2019, 28, p 1789–1850.

    Article  Google Scholar 

  2. D.T. Martin, M. Rezvani Rad, A. McDonald and T. Hussain, Beyond traditional coatings: a review on thermal-sprayed functional and smart coatings, J. Therm. Spray Technol., 2019, 28, p 598–644.

    Article  Google Scholar 

  3. D.H. Kuo and W.M. Kriven, Charaterization of Yttrium phosphate and a yttrium phosphate/yttrium aluminate laminate, J. Am. Ceram. Soc., 1995, 78, p 3121–3124.

    Article  CAS  Google Scholar 

  4. Y. Hikichi, T. Ota, K. Daimon, T. Hattori and M. Mizuno, Thermal, mechanical, and chemical properties of sintered xenotime RPO4 (R=Y, Er, Yb, or Lu), J. Am. Ceram. Soc., 1998, 81, p 2216–2218.

    Article  CAS  Google Scholar 

  5. S. Lucas, E. Champion, D. Bregiroux, D. Bernache-Assollant and F. Audubert, Rare earth phosphate powders RePO4 _ nH2O (Re=La, Ce or Y)—Part I. Synthesis and characterization, J. Solid State Chem., 2004, 177, p 1302–1311.

    Article  CAS  Google Scholar 

  6. Y. Wang, X. Chen, W. Liu, L. Cheng and L. Zhang, Exploration of YPO4 as a potential environmental barrier coating, Ceram. Int., 2010, 36, p 755–759.

    Article  CAS  Google Scholar 

  7. A. Pragatheeswaran et al., Plasma spray-deposited lanthanum phosphate coatings for protection against molten uranium corrosion, Surf. Coat. Technol., 2015, 265, p 166–173.

    Article  CAS  Google Scholar 

  8. L. Benharrata, L. Guerbousb, D. Bradaia, A. Boukerikab, A. Manseric, N. Selmid, B. Rahalb and M.S.E. Hamroune, Preparation and characterization of luminescent YPO4: Eu3+ thin films using sol gel spin coating method, Thin Solid Films, 2020, 694, p 137738.

    Article  Google Scholar 

  9. P.L. Fauchais, J.V.R. Heberlein and M.I. Boulos, Thermal Spray Fundamentals from Powder to Part, Springer, 2014.

    Book  Google Scholar 

  10. A. Marotta, Determination of axial thermal plasma temperatures without Abel inversion, J. Phys. D: Appl. Phys., 1994, 27, p 268–272.

    Article  CAS  Google Scholar 

  11. H. R. Griem, Plasma Spectroscopy. (McGraw-Hill.New York, 1964)

  12. D. Uhrlandt, Diagnostics of metal inert gas and metal active gas welding processes, J. Phys. D: Appl. Phys. D, 2016, 49, p 313001.

    Article  Google Scholar 

  13. V.A. Zhovtyanskii, K.V. Nelep and O.M. Novik, Recombining-plasma spectroscopy in the LTE-PLTE transition region, zhurnal prikladnoi spektroskopii, 1988, 49, p 400–407.

    CAS  Google Scholar 

  14. A. Anders, S. Anders and E. Hantzsche, Validity conditions for complete and partial local thermodynamic equilibrium of nonhydrogenic level systems and their application to copper vapor arcs in vacuum, IEEE Trans. Plasma Sci., 1989, 17, p 653–656.

    Article  CAS  Google Scholar 

  15. M. Numano, Criteria for local thermodynamic equilibrium distributions of populations of excited atoms in a plasma, J. Quant. Spectrosc. Radiat. Transfer, 1990, 43, p 311–317.

    Article  Google Scholar 

  16. G.M.W. Kroesen, D.C. Schram, C.J. Timmermans and J.C.M. de Haas, The energy balance of a plasma in partial local thermodynamic equilibrium, IEEE Trans. Plasma Sci., 1990, 18, p 985–991.

    Article  Google Scholar 

  17. G. Kuhn and M. Kock, A spatially resolved relaxation method for PLTE plasma diagnostics in free-burning arcs, J. Phys. D: Appl. Phys., 2006, 39, p 2401–2414.

    Article  Google Scholar 

  18. https://physics.nist.gov/PhysRefData/ASD/lines_form.html. Accessed 14 July 2021

  19. Y.T. Cho and S.J. Na, Application of Abel inversion in real-time calculations for circularly and elliptically symmetric radiation sources, Meas. Sci. Technol., 2005, 16, p 878–884.

    Article  CAS  Google Scholar 

  20. E.R.G. Eckert, E. Pfender and S.A. Wutzke, Study of electric arc behavior with superimposed flow, AIAA J, 1967, 5, p 707–713.

    Article  Google Scholar 

  21. E.R.G. Eckert, E. Pfender and S.A. Wutzke, Symptomatic behavior of an electric arc with a superimposed flow, AIAA J., 1968, 6, p 1474–1482.

    Article  Google Scholar 

  22. M.P. Collares and E. Pfender, Effect of current connection to the anode nozzle on plasma torch efficiency, IEEE Trans. Plasma Sci., 1997, 25, p 864–871.

    Article  CAS  Google Scholar 

  23. S. Ghorui and A.K. Das, Origin of fluctuations in atmospheric pressure arc plasma devices, Phys. RevE, 2004, 69, p 026408.

    CAS  Google Scholar 

  24. S. Ghorui et al., Direct probing of anode arc root dynamics and voltage instability in a dc non-transferred arc plasma jet, Plasma Sour. Sci. Technol.., 2015, 24, p 065003.

    Article  Google Scholar 

  25. N. Tiwari, S. Bhandari and S. Ghorui, Stability and structures in atmospheric pressure DC non-transferred arc plasma jets of argon, nitrogen, and air, Phys. Plasmas, 2018, 25, p 072103.

    Article  Google Scholar 

  26. S. Ghorui, J.V.R. Heberlein and E. Pfender, Non-equilibrium modelling of an oxygen-plasma cutting torch, J. Phys. D: Appl. Phys., 2007, 40, p 1966–1976.

    Article  CAS  Google Scholar 

  27. K. Matsuo, Y. Miyazato and H.D. Kim, Shock train and pseudo shock phenomena in internal gas flows, Prog. Aerosp. Sci., 1999, 35, p 33–100.

    Article  Google Scholar 

  28. L. Robin and M.G. Hunt, Shock train unsteadiness characteristics, oblique-to-normal transition, and three-dimensional leading shock structure, AIAA J., 2017, 56, p 1–19.

    Google Scholar 

  29. J. B. Allen, T. Hauser, C.J. Tam, Numerical simulations of a scramjet isolator using RANS and LES approaches, 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada

Download references

Acknowledgments

The authors wish to thank Head, L&PTD, and AD, BTDG for their kind support. Technical helps received from Mr. T.S. Hire in arranging the setup and troubleshooting are thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ghorui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandari, S., Chakravarthy, Y., Misra, V.C. et al. Temperature Profile in YPO4 Laden Plasma Jet and Its Evolution with Arc Current and Powder Loading. J Therm Spray Tech 30, 1999–2012 (2021). https://doi.org/10.1007/s11666-021-01275-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-021-01275-y

Keywords

Navigation