Skip to main content
Log in

Ultrasonic Consolidation Post-Treatment of CuNi:Cr3C2-NiCr Composite Cold Spray Coatings: A Mechanical and Microstructure Assessment

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The traditional role of cold spray coatings lays in the dimensional restoration of assorted components and machine parts, but these repairs often result in coating mechanical properties that fall short when compared to the parent material. A potential solution to improve mechanical properties, while maintaining the benefits of a complete solid-state process where temperatures remain below the metallic melting point, is by incorporating ultrasonic consolidation as a post-treatment process in conjunction with the cold spray coating. In the work presented here, ultrasonic consolidation was applied upon two metal matrix composite cold spray coatings consisting of mechanically blended feedstock of Cu-38 wt.%Ni and Cr3C2-30 wt.%NiCr at 50:50 and 25:75 wt.%, respectively. Metallography and mechanical testing were performed to analyze coating response to the ultrasonic consolidation process, which included mean free path relationship of the reinforcing particles (Cr3C2-NiCr). The results demonstrated an increase in tensile and adhesion properties attributed to the ultrasonic consolidation step, as well as the influence of the increased Cr3C2-NiCr content. Ultrasonic consolidation applied as a post-treatment upon cold spray coatings was found to provide a unique approach to complete solid-state processing where coating mechanical properties can be improved and/or modified with carbide containing particle content within the metal matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Q. Wang and M.X. Zhang, Review on Recent Research and Development of Cold Spray Technologies, Key Eng. Mater., 2013, 533, p 1–52.

    Article  Google Scholar 

  2. Schmelzle, J., E.V. Kline, C.J. Dickman, E.W. Reutzel, G. Jones, and T.W. Simpson, (Re)Designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing, J Mech Design, 2015, 137(11)

  3. R.F. Brown, G.M. Smith, J. Potter and T.J. Eden, Parameter Development Via in Situ Residual Stress Measurement and Post-Deposition Analysis of Cold Spray Cuni Coatings, J. Therm. Spray Technol., 2020, 29(8), p 1876–1891.

    Article  CAS  Google Scholar 

  4. T. Stoltenhoff, H. Kreye and H.J. Richter, An Analysis of the Cold Spray Process and Its Coatings, J. Therm. Spray Technol., 2002, 11(4), p 542–550.

    Article  CAS  Google Scholar 

  5. V. Luzin, K. Spencer and M.X. Zhang, Residual Stress and Thermo-Mechanical Properties of Cold Spray Metal Coatings, Acta Mater., 2011, 59(3), p 1259–1270.

    Article  CAS  Google Scholar 

  6. H. Assadi, F. Gartner, T. Stoltenhoff and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379–4394.

    Article  CAS  Google Scholar 

  7. H. Assadi, T. Schmidt, H. Richter, J.O. Kliemann, K. Binder, F. Gartner, T. Klassen and H. Kreye, On Parameter Selection in Cold Spraying, J. Therm. Spray Technol., 2011, 20(6), p 1161–1176.

    Article  CAS  Google Scholar 

  8. K. Binder, J. Gottschalk, M. Kollenda, F. Gartner and T. Klassen, Influence of Impact Angle and Gas Temperature on Mechanical Properties of Titanium Cold Spray Deposits, J. Therm. Spray Technol., 2011, 20(1–2), p 234–242.

    Article  CAS  Google Scholar 

  9. X.T. Luo, Y.K. Wei, Y. Wang and C.J. Li, Microstructure and Mechanical Property of Ti and Ti6al4v Prepared by an in-Situ Shot Peening Assisted Cold Spraying, Mater. Des., 2015, 85, p 527–533.

    Article  CAS  Google Scholar 

  10. P.A. Podrabinnik and I.V. Shishkovsky, Laser Post Annealing of Cold-Sprayed Al-Ni Composite Coatings for Green Energy Tasks, Proc. IUTAM, 2017, 23, p 108–113.

    Article  Google Scholar 

  11. A. Sova, S. Grigoriev, A. Okunkova and I. Smurov, Cold Spray Deposition of 316l Stainless Steel Coatings on Aluminium Surface with Following Laser Post-Treatment, Surf. Coat. Technol., 2013, 235, p 283–289.

    Article  CAS  Google Scholar 

  12. Y. Sano, K. Akita, K. Masaki, Y. Ochi, I. Altenberger and B. Scholtes, Laser Peening without Coating as a Surface Enhancement Technology, J. Laser Micro Nanoeng., 2006, 1(3), p 161–166.

    Article  CAS  Google Scholar 

  13. P. Poza, C.J. Munez, M.A. Garrido, S. Vezzu, S. Rech and A. Trentin, Effect of Laser Remelting on the Mechanical Behaviour of Inconel 625 Cold-Sprayed Coatings, Procedia Eng., 2011, 10, p 3799–3804.

    Article  CAS  Google Scholar 

  14. R.F. Li, Z.G. Li, Y.Y. Zhu and K. Qi, Structure and Corrosion Resistance Properties of Ni-Fe-B-Si-Nb Amorphous Composite Coatings Fabricated by Laser Processing, J. Alloys Compd., 2013, 580, p 327–331.

    Article  CAS  Google Scholar 

  15. A. Astarita, S. Genna, C. Leone, F.M.C. Minutolo, F. Rubino and A. Squillace, Study of the Laser Remelting of a Cold Sprayed Titanium Layer, Procedia CIRP, 2015, 33, p 452–457.

    Article  Google Scholar 

  16. M.H. Bocanegra-Bernal, Hot Isostatic Pressing (Hip) Technology and Its Applications to Metals and Ceramics, J. Mater. Sci., 2004, 39(21), p 6399–6420.

    Article  CAS  Google Scholar 

  17. M. Khomutov, P. Potapkin, V. Cheverikin, P. Petrovskiy, A. Travyanov, I. Logachev, A. Sova and I. Smurov, Effect of Hot Isostatic Pressing on Structure and Properties of Intermetallic Nial-Cr-Mo Alloy Produced by Selective Laser Melting, Intermetallics, 2020, 120, p 106766.

    Article  CAS  Google Scholar 

  18. D.R. White, Ultrasonic Consolidation of Aluminum Tooling, Adv. Mater. Process., 2003, 161(1), p 64–65.

    Google Scholar 

  19. D.R. Foster, M.J. Dapino and S.S. Babu, Elastic Constants of Ultrasonic Additive Manufactured Al 3003–H18, Ultrasonics, 2013, 53(1), p 211–218.

    Article  CAS  Google Scholar 

  20. P.J. Wolcott, A. Hehr, C. Pawlowski and M.J. Dapino, Process Improvements and Characterization of Ultrasonic Additive Manufactured Structures, J. Mater. Process. Technol., 2016, 233, p 44–52.

    Article  CAS  Google Scholar 

  21. G.D.J. Ram, Y. Yang and B.E. Stucker, Effect of Process Parameters on Bond Formation During Ultrasonic Consolidation of Aluminum Alloy 3003, J. Manuf. Syst., 2006, 25(3), p 221–238.

    Article  Google Scholar 

  22. J.H. Ouyang, E. Yarrapareddy and R. Kovacevic, Microstructural Evolution in the Friction Stir Welded 6061 Aluminum Alloy (T6-Temper Condition) to Copper, J. Mater. Process. Technol., 2006, 172(1), p 110–122.

    Article  CAS  Google Scholar 

  23. H.J. Aval, Microstructural Evolution and Mechanical Properties of Friction Stir-Welded C71000 Copper-Nickel Alloy and 304 Austenitic Stainless Steel, Int. J. Miner. Met. Mater., 2018, 25(11), p 1294–1303.

    Article  CAS  Google Scholar 

  24. R.W. Fonda, J.F. Bingert and K.J. Colligan, Development of Grain Structure During Friction Stir Welding, Scr. Mater., 2004, 51(3), p 243–248.

    Article  CAS  Google Scholar 

  25. V. Fartashvand, A. Abdullah and S.A.S. Vanini, Effects of High Power Ultrasonic Vibration on the Cold Compaction of Titanium, Ultrason. Sonochem., 2017, 36, p 155–161.

    Article  CAS  Google Scholar 

  26. I.S. Lee, C.J. Hsu, C.F. Chen, N.J. Ho and P.W. Kao, Particle-Reinforced Aluminum Matrix Composites Produced from Powder Mixtures Via Friction Stir Processing, Compos. Sci. Technol., 2011, 71(5), p 693–698.

    Article  CAS  Google Scholar 

  27. C.J. Huang, W.Y. Li, Z.H. Zhang, M.S. Fu, M.P. Planche, H.L. Liao and G. Montavon, Modification of a Cold Sprayed Sicp/Al5056 Composite Coating by Friction Stir Processing, Surf. Coat. Technol., 2016, 296, p 69–75.

    Article  CAS  Google Scholar 

  28. P.J. Wolcott, A. Hehr and M.J. Dapino, Optimized Welding Parameters for Al 6061 Ultrasonic Additive Manufactured Structures, J. Mater. Res., 2014, 29(17), p 2055–2065.

    Article  CAS  Google Scholar 

  29. A. Hehr, P.J. Wolcott and M.J. Dapino, Effect of Weld Power and Build Compliance on Ultrasonic Consolidation, Rapid Prototyp. J., 2016, 22(2), p 377–386.

    Article  Google Scholar 

  30. C.D. Hopkins, M.J. Dapino and S.A. Fernandez, Statistical Characterization of Ultrasonic Additive Manufacturing Ti/Al Composites, J. Eng. Mater. Trans. ASME, 2010, 132(4), p 041006–1.

    Article  Google Scholar 

  31. N. Sridharan, M. Gussev, R. Seibert, C. Parish, M. Norfolk, K. Terrani and S.S. Babu, Rationalization of Anisotropic Mechanical Properties of Al-6061 Fabricated Using Ultrasonic Additive Manufacturing, Acta Mater., 2016, 117, p 228–237.

    Article  CAS  Google Scholar 

  32. D.E. Schick, R.M. Hahnlen, R. Dehoff, P. Collins, S.S. Babu, M.J. Dapino and J.C. Lippold, Microstructural Characterization of Bonding Interfaces in Aluminum 3003 Blocks Fabricated by Ultrasonic Additive Manufacturing, Weld J., 2010, 89(5), p 105s–115s.

    Google Scholar 

  33. C.Y. Kong, R.C. Soar and P.M. Dickens, Characterisation of Aluminium Alloy 6061 for the Ultrasonic Consolidation Process, Mater. Sci. Eng. A Struct., 2003, 363(1–2), p 99–106.

    Article  Google Scholar 

  34. H.S. Kim and M.B. Bush, The Effects of Grain Size and Porosity on the Elastic Modulus of Nanocrystalline Materials, Nanostruct. Mater., 1999, 11(3), p 361–367.

    Article  CAS  Google Scholar 

  35. G.M. Smith, M. Resnick, B. Kjellman, J. Wigren, G. Dwivedi and S. Sampath, Orientation-Dependent Mechanical and Thermal Properties of Plasma-Sprayed Ceramics, J. Am. Ceram. Soc., 2018, 101(6), p 2471–2481.

    Article  CAS  Google Scholar 

  36. M. Kouzeli and A. Mortensen, Size Dependent Strengthening in Particle Reinforced Aluminium, Acta Mater, 2002, 50(1), p 39–51.

    Article  CAS  Google Scholar 

  37. S. Usmani, S. Sampath, D.L. Houck and D. Lee, Effect of Carbide Grain Size on the Sliding and Abrasive Wear Behavior of Thermally Sprayed Wc-Co Coatings, Tribol. Trans., 1997, 40(3), p 470–478.

    Article  CAS  Google Scholar 

  38. P. Chivavibul, M. Watanabe, S. Kuroda and K. Shinoda, Effects of Carbide Size and Co Content on the Microstructure and Mechanical Properties of Hvof-Sprayed Wc-Co Coatings, Surf. Coat. Technol., 2007, 202(3), p 509–521.

    Article  CAS  Google Scholar 

  39. W.M. Zhao, C. Liu, L.X. Dong and Y. Wang, Effects of Arc Spray Process Parameters on Corrosion Resistance of Ti Coatings, J. Therm. Spray Technol., 2009, 18(4), p 702–707.

    Article  CAS  Google Scholar 

  40. X.T. Luo, G.M. Smith and S. Sampath, On the Interplay between Adhesion Strength and Tensile Properties of Thermal Spray Coated Laminates-Part I: High Velocity Thermal Spray Coatings, J. Therm. Spray. Technol., 2018, 27(3), p 296–307.

    Article  CAS  Google Scholar 

  41. G. Munday, J. Hogan and A. McDonald, On the Microstructure-Dependency of Mechanical Properties and Failure of Low-Pressure Cold-Sprayed Tungsten Carbide-Nickel Metal Matrix Composite Coatings, Surf. Coat. Technol., 2020, 396, p 125947.

    Article  CAS  Google Scholar 

  42. G.M. Smith and S. Sampath, Sustainability of Metal Structures Via Spray-Clad Remanufacturing, JOM, 2018, 70(4), p 512–520.

    Article  Google Scholar 

  43. G.M. Smith, O. Higgins and S. Sampath, In-Situ Observation of Strain and Cracking in Coated Laminates by Digital Image Correlation, Surf. Coat. Technol., 2017, 328, p 211–218.

    Article  CAS  Google Scholar 

  44. X.T. Luo, M.L. Yao, N. Ma, M. Takahashi and C.J. Li, Deposition Behavior, Microstructure and Mechanical Properties of an in-Situ Micro-Forging Assisted Cold Spray Enabled Additively Manufactured Inconel 718 Alloy, Mater. Des., 2018, 155, p 384–395.

    Article  CAS  Google Scholar 

  45. T.W. Gustafson, P.C. Panda, G. Song and R. Raj, Influence of Microstructural Scale on Plastic Flow Behavior of Metal Matrix Composites, Acta Mater., 1997, 45(4), p 1633–1643.

    Article  CAS  Google Scholar 

  46. P. Chen, W.B. Liao, L.H. Liu, F. Luo, X.Y. Wu, P.J. Li, C. Yang, M. Yan, Y. Liu, L.C. Zhang and Z.Y. Liu, Ultrafast Consolidation of Bulk Nanocrystalline Titanium Alloy Through Ultrasonic Vibration, Sci. Rep., 2018, 8, p 1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. Brown.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, R.F., Smith, G.M., Hehr, A. et al. Ultrasonic Consolidation Post-Treatment of CuNi:Cr3C2-NiCr Composite Cold Spray Coatings: A Mechanical and Microstructure Assessment. J Therm Spray Tech 30, 2069–2082 (2021). https://doi.org/10.1007/s11666-021-01262-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-021-01262-3

Keywords

Navigation