Skip to main content

Advertisement

Log in

HVOF-Sprayed AlSi50 Alloy Coatings as a Novel Electrothermal Anti-icing/De-icing System for Polymer-based Composite Structures

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

A Correction to this article was published on 28 December 2021

This article has been updated

Abstract

To develop an anti-icing/de-icing system which can be practically used for aircraft wings made of fiber-reinforced polymer composites (FRPC) is an ongoing challenge. In this study, we have developed an AlSi50 alloy coating as electrothermal de-icing elements for FRPC structures by using high-velocity oxy-fuel (HVOF) spray. During the spraying process, no burning and degradation of the polymer-based substrate induced by the melted particles occur and the average bond strength of the AlSi50 coating on FRPC substrate is as high as 10.0 MPa. The electrical resistivity of the AlSi50 coating at 26 ºC is about 41.30 × 10−8 Ω.m, which can be compared with that of the standard heating element made of constantan. The thermal infrared image of AlSi50 coating shows the fine uniformity of temperature distribution when electrical current was supplied. It is possible to achieve 60 ºC within 15 min when the applied electrical power is less than 8.5 W. The FRPC structure coated with AlSi50 coatings also shows efficient anti-icing/de-icing performance in icing condition at −30 ºC. The preliminary results suggest that AlSi50 coating has the potential to be applied in fiber-reinforced plastic anti-icing/de-icing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

References

  1. T. Cebeci and F. Kafyeke, Aircraft Icing, Annu. Rev, Fluid Mech., 2003, 35, p 11–21.

    Article  Google Scholar 

  2. F. Caliskan and C. Hajiyev, A Review of in-Flight Detection and Identification of Aircraft icing and Reconfigurable Control, Prog. Aerosp. Sci., 2013, 60, p 12–34.

    Article  Google Scholar 

  3. N. Sharifi, A. Dolatabadi, M. Pugh and C. Moreau, Anti-icing Performance and Durability of Suspension Plasma Sprayed TiO2 Coatings, Cold Reg. Sci. Technol., 2019, 159, p 1–12.

    Article  Google Scholar 

  4. M. Pourbagian and W.G. Habashi, Aero-Thermal Optimization of in-Flight Electro-Thermal Ice Protection Systems in Transient De-icing Mode, Int. J. Heat Fluid Fl., 2015, 54, p 167–182.

    Article  Google Scholar 

  5. B.G. Falzon, P. Robinson, S. Frenz and B. Gilbert, Development and Evaluation of a Novel Integrated Anti-icing/de-icing Technology for Carbon Fibre Composite Aerostructures Using an Electro-conductive Textile, Compos. Part A-Appl. S., 2015, 68, p 323–335.

    Article  CAS  Google Scholar 

  6. O. Parent and A. Ilinca, Anti-icing and De-icing Techniques for Wind Turbines: Critical Review, Cold Reg. Sci. Technol., 2011, 65, p 88–96.

    Article  Google Scholar 

  7. W. Huang, X. Gan and L. Zhu, Fabrication and Property of Novel Double-Layer Coating Deposited on Polyimide Matrix Composites by Atmospheric Plasma Spraying, Ceram. Int., 2018, 44, p 5473–5485.

    Article  CAS  Google Scholar 

  8. V. Bortolussi, B. Figliuzzi, F. Willot, M. Faessel and M. Jeandin, Electrical Conductivity of Metal–polymer Cold Spray Composite Coatings onto Carbon Fiber-reinforced Polymer, J. Therm. Spray Techn., 2020, 29, p 642–656.

    Article  CAS  Google Scholar 

  9. S.U. Ofoegbu, K. Yasakau, S. Kalip, H.L. Nogueira, M.G.S. Ferreira and M.L. Zheludkevich, Modification of Carbon Fibre Reinforced Polymer (CFRP) Surface with Sodium Dodecyl Sulphate for Mitigation of Cathodic Activity, Appl. Surf. Sci., 2019, 478, p 924–936.

    Article  CAS  Google Scholar 

  10. N. Karim, M. Zhang, S. Afroj, V. Koncherry, P. Potluri and K.S. Novoselov, Graphene-based Surface Heater for De-icing Applications, RSC Adv., 2018, 8, p 16815–16823.

    Article  CAS  Google Scholar 

  11. A. Lopera-Valle and A. McDonald, Flame-sprayed Coatings as De-icing Elements for Fiber-reinforced Polymer Composite Structures: Modeling and Experimentation, Int. J. Heat Mass Tran., 2016, 97, p 56–65.

    Article  CAS  Google Scholar 

  12. Z. Zhao, H. Chen, X. Liu, H. Liu and D. Zhang, Development of High-efficient Synthetic Electric Heating Coating for Anti-icing/de-icing, Surf. Coat. Technol., 2018, 349, p 340–346.

    Article  CAS  Google Scholar 

  13. S.T. Buschhorn, S.S. Kessler, N. Lachmann, J. Gavin, G. Thomas, and B. L. Wardle, Electrothermal icing protection of aerosurfaces using conductive polymer nanocomposites, 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (AIAA) (2013)

  14. O. Redondo, S.G. Prolongo, M. Campo, C. Sbarufatti and M. Giglio, Anti-icing and De-icing Coatings Based Joule’s Heating of Graphene Nanoplatelets, Compos. Sci. Technol., 2018, 164, p 65–73.

    Article  CAS  Google Scholar 

  15. X. Liu, H. Chen, Z. Zhao, Y. Yan and D. Zhang, Slippery Liquid-infused Porous Electric Heating Coating for Anti-icing and De-icing Applications, Surf. Coat. Technol., 2019, 374, p 889–896.

    Article  CAS  Google Scholar 

  16. E. Enríquez, J.F. Fernández, J. De Frutos and M.A. De la Rubia, Tailoring of the Electrical Properties of Carbon Black–silica Coatings for De-icing Applications, Ceram. Int., 2015, 41, p 2735–2743.

    Article  CAS  Google Scholar 

  17. X. Zhou, W.J. Song, J.Y. Yuan, Q.M. Gong, H. Zhang, X.Q. Cao and D.B. Dingwell, Thermophysical Properties and Cyclic Lifetime of Plasma Sprayed SrAl12O19 for Thermal Barrier Coating Applications, J. Am. Ceram. Soc., 2020, 103, p 5599–5611.

    Article  CAS  Google Scholar 

  18. W. Huang, X. Fan, Y. Zhao, X. Zhou, X. Meng, Y. Wang, B. Zou, X. Cao and Z. Wang, Fabrication of Thermal Barrier Coatings onto Polyimide Matrix Composites via Air Plasma Spray Process, Surf. Coat. Technol., 2012, 207, p 421–429.

    Article  CAS  Google Scholar 

  19. A.C. Liberati, H.Q. Che, P. Vo and S. Yue, Observation of an Indirect Deposition Effect while Cold Spraying Sn-Al Mixed Powders onto Carbon Fiber Reinforced Polymers, J. Therm. Spray Techn., 2020, 29, p 134–146.

    Article  CAS  Google Scholar 

  20. R. Gonzalez, H. Ashrafizadeh, A. Lopera, P. Mertiny and A. McDonald, A Review of Thermal Spray Metallization of Polymer-Based Structures, J. Therm. Spray Techn., 2016, 25, p 897–919.

    Article  CAS  Google Scholar 

  21. H.R. Abedi, M. Salehi and A. Shafyei, Microstructural, Mechanical and Thermal Shock Properties of Triple-layer TBCs with Different Thicknesses of Bond Coat and Ceramic Top Coat Deposited onto Polyimide Matrix Composite, Ceram. Int., 2018, 44, p 6212–6222.

    Article  CAS  Google Scholar 

  22. H.R. Abedi, M. Salehi and A. Shafyei, Multi-layered Thermal Barrier Coatings on BMI Polyimide Matrix Composite, Surf. Coat. Technol., 2018, 337, p 104–116.

    Article  CAS  Google Scholar 

  23. J. Liu, J. Wang, H. Memon, Y. Fu, T. Barman, K.-S. Choi and X. Hou, Hydrophobic/icephobic Coatings Based on Thermal Sprayed Metallic Layers with Subsequent Surface Functionalization, Surf. Coat. Technol., 2019, 357, p 267–272.

    Article  CAS  Google Scholar 

  24. A. Liu, M. Guo, J. Gao and M. Zhao, Influence of Bond Coat on Shear Adhesion Strength of Erosion and Thermal Resistant Coating for Carbon Fiber Reinforced Thermosetting Polyimide, Surf. Coat. Technol., 2006, 201, p 2696–2700.

    Article  CAS  Google Scholar 

  25. A. Rezzoug, S. Abdi, A. Kaci and M. Yandouzi, Thermal Spray Metallisation of Carbon Fibre Reinforced Polymer Composites: Effect of Top Surface Modification on Coating Adhesion and Mechanical Properties, Surf. Coat. Technol., 2018, 333, p 13–23.

    Article  CAS  Google Scholar 

  26. A. Lopera-Valle and A. McDonald, Application of Flame-Sprayed Coatings as Heating Elements for Polymer-based Composite Structures, J. Therm. Spray Techn., 2015, 24, p 1289–1301.

    Article  CAS  Google Scholar 

  27. H.L. Tian, C.L. Wang, M.Q. Guo et al., Study on Process and Performance of Thermal Protective Coating on Polyimide Resin Matrix Composite, Ceram. Int., 2020, 46, p 12744–12758.

    Article  CAS  Google Scholar 

  28. F. Robitaille, M. Yandouzi, S. Hind and B. Jodoin, Metallic Coating of Aerospace Carbon/epoxy Composites by the Pulsed Gas Dynamic Spraying Process, Surf. Coat. Technol., 2009, 203(19), p 2954–2960.

    Article  CAS  Google Scholar 

  29. J. Wigren, J.F. Vries and D. Greving, Effect of powder morphology, microstructure, and residual stresses on thermal barrier coating thermal shock performance, Thermal Spray: Practical Solutions for Engineering Problems. C.C. Berndt Ed., ASM International, Materials Park Ohio USA, 1996, p 855–861

    Google Scholar 

  30. T.H. Lee and S.J. Hong, Microstructure and Mechanical Properties of Al-Si-X Alloys Fabricated by Gas Atomization and Extrusion Process, J. Alloy. Compd., 2009, 487, p 218–224.

    Article  CAS  Google Scholar 

  31. C. Cui, A. Schulz, K. Schimanski and H.W. Zoch, Spray Forming of Hypereutectic Al-Si Alloys, J. Mater. Process. Tech., 2009, 209, p 5220–5228.

    Article  CAS  Google Scholar 

  32. J.F. Zhang, M. Liu and J.B. Song, Microstructure and Corrosion Behavior of Fe-Based Amorphous Coating Prepared by HVOF, J. Alloy. Compd., 2017, 721, p 506–511.

    Article  CAS  Google Scholar 

  33. R. Ghasemi and H. Vakilifard, Plasma-sprayed Nanostructured YSZ Thermal Barrier Coatings: Thermal Insulation Capability and Adhesion Strength, Ceram. Int., 2017, 43, p 8556–8563.

    Article  CAS  Google Scholar 

  34. A. Lopera, “Metallic Flame-Sprayed Coatings as Anti-icing and De-icing Systems for Wind Turbines,” Master Thesis, University of Alberta, (2015).

  35. C. Silbernagel, I. Ashcroft, P. Dickens and M. Galea, Electrical Resistivity of Additively Manufactured AlSi10Mg for use in Electricmotors, Addit. Manuf., 2018, 21, p 395–403.

    CAS  Google Scholar 

  36. A. Inoue, Y. Bizen, H.M. Kimura, T. Masumoto and M. Sakamoto, Compositional Range, Thermal Stability, Hardness and Electrical Resistivity of Amorphous Alloys in Al-Si (or Ge)-Transition Metal Systems, J. Mater. Sci., 1988, 23, p 3640–3647.

    Article  CAS  Google Scholar 

  37. M.H. Mulazimoglu and R.A.L.D.E. Gruzleski, The Electrical Conductivity of Cast Al-Si Alloys in the Range 2 to 12.6 wt Pct Silicon, Metall. Trans. A., 1989, 20, p 383–389.

    Article  Google Scholar 

  38. M.H. Mulazimoglu, R.A.L. Drew and J.E. Gruzleski, The Effect of Strontium on the Electrical Resistivity and Conductivity of Aluminum-silicon Alloys, Metall. Trans. A., 1991, 18, p 941–947.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51702244 and 51875424), National Science and Technology Major Project (2017-VI-0010-0081) and Yantai high-end talent introduction “Double Hundred Plan” (2021).

Author information

Authors and Affiliations

Authors

Contributions

Xin Zhou contributed to the conceptualization and writing–reviewing and editing; Shouliang Yan was involved in the investigation and data curation; Hua Zhang, Shujuan Dong and Xia Li analyzed and interpreted the data. Jianing Jiang contributed to the thermal spray technology. Xueqiang Cao contributed to the resources.

Corresponding authors

Correspondence to Xin Zhou or Xueqiang Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The author list was published out of order.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, S., Zhou, X., Zhang, H. et al. HVOF-Sprayed AlSi50 Alloy Coatings as a Novel Electrothermal Anti-icing/De-icing System for Polymer-based Composite Structures. J Therm Spray Tech 30, 2161–2173 (2021). https://doi.org/10.1007/s11666-021-01243-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-021-01243-6

Keywords

Navigation