Skip to main content
Log in

Comparison of Micro-nano FeCoNiCrAl and FeCoNiCrMn Coatings Prepared from Mechanical Alloyed High-entropy Alloy Powders

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

High-entropy alloy powders synthesized by mechanical alloying were used as feedstock to prepare FeCoNiCrAl and FeCoNiCrMn coatings by atmospheric plasma spraying. The microstructure and phase composition of the coatings were analyzed by scanning electron microscopy, energy-dispersive spectroscopy, x-ray diffraction, and transmission electron microscopy. The microhardness and wear behavior of the coatings were measured by a microhardness tester and a pin disk-type wear tester, respectively. Polarization curves were plotted to compare the corrosion resistance of the coatings in 3.5 wt.% NaCl solution. It was observed that the FeCoNiCrAl coating was composed of micro-nano face-centered cubic and body-centered cubic solid solutions and a small amount of band-like micro-nano alumina formed during plasma spraying and the FeCoNiCrMn coating was composed of only face-centered cubic solid solution and dispersed nanocrystalline oxide (Mn1.5Cr1.5O4). The average microhardness values of the FeCoNiCrAl and FeCoNiCrMn coatings were determined as 550.1 HV100gf and 440.9 HV100gf, respectively. The FeCoNiCrAl coating had better wear resistance than the FeCoNiCrMn coating. The main wear mechanisms of the FeCoNiCrAl and FeCoNiCrMn coatings were fatigue wear. The FeCoNiCrAl coating had higher corrosion potential, lower corrosion current density, and better corrosion resistance than the FeCoNiCrMn coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau and S.Y. Chang, Nano-structured High Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299–303.

    Article  CAS  Google Scholar 

  2. D.B. Miracle and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2017, 122, p 448–511.

    Article  CAS  Google Scholar 

  3. H. Zhang, Y. Pan, Y.Z. He and H.S. Jiao, Microstructure and Properties of 6FeNiCoSiCrAlTi High Entropy Alloy Coating Prepared by Laser Cladding, Appl. Surf. Sci., 2011, 257, p 2259–2263.

    Article  CAS  Google Scholar 

  4. X. Qiu, Microstructure and Mechanical Properties of CoCrFeNiMo High-entropy Alloy Coatings, J. Market. Res., 2020, 9, p 5127–5133.

    CAS  Google Scholar 

  5. C. Ni, Y. Shi, J. Liu and G. Huang, Characterization of Al0.5FeCu0.7NiCoCr HEA Coating on Aluminum Alloy by Laser Cladding, Opt. Laser Technol., 2018, 105, p 257–263.

    Article  CAS  Google Scholar 

  6. X. Ye, M. Ma, Y. Cao, W. Liu, X. Ye and Y. Gu, The Property Research on HEA AlxFeCoNiCuCr Coating by Laser Cladding, Physics Procedia, 2011, 12, p 303–312.

    Article  CAS  Google Scholar 

  7. H. Zhang, Ye. Pan and Y. He, Synthesis and Characterization of FeCoNiCrCu High-entropy Alloy Coating by Laser Cladding, Mater. Des., 2011, 32, p 1910–1915.

    Article  CAS  Google Scholar 

  8. P. Huang and J. Yeh, Effects of Substrate Temperature and Post-annealing on Microstructure and Properties of (AlCrNbSiTiV) N Coatings, Thin Solid Films, 2009, 518, p 180–184.

    Article  CAS  Google Scholar 

  9. V. Dolique, A.L. Thomann, P. Brault, Y. Tessier and P. Gillon, Thermal Stability of AlCoCrCuFeNi High Entropy Alloy Thin Films Studied by In-situ XRD Analysis, Surf. Coat. Technol., 2010, 204, p 1989–1992.

    Article  CAS  Google Scholar 

  10. H. Hsueh, W. Shen, M. Tsai and J. Yeh, Effect of Nitrogen Content and Substrate Bias on Mechanical and Corrosion Properties of High-Entropy Film (AlCrSiTiZr) 100−xNx, Surf. Coat. Technol., 2012, 206, p 4106–4112.

    Article  CAS  Google Scholar 

  11. A. Vallimanalan, S.P.K. Babu, S. Muthukumaran, M. Murali, V. Gaurav and R. Mahendran, Corrosion Behaviour of Thermally Sprayed Mo Added AlCoCrNi High Entropy Alloy Coating, Mater. Today: Proc., 2020, 27, p 2398–2400.

    CAS  Google Scholar 

  12. J. Liang, K. Cheng, Y. Chen, S. Chiu, C. Chiu, J. Lee and S. Chen, Comparisons of Plasma-Sprayed and Sputtering Al0.5CoCrFeNi2 High-Entropy Alloy Coatings, Surf. Coat. Technol., 2020, 403, p 126411.

    Article  CAS  Google Scholar 

  13. A. Meghwal, A. Anupam, V. Luzin, C. Schulz, C. Hall, B.S. Murty, R.S. Kottada, C.C. Berndt and A.S.M. Ang, Multiscale Mechanical Performance and Corrosion Behaviour of Plasma Sprayed AlCoCrFeNi High-Entropy Alloy Coatings, J. Alloys Compd., 2021, 854, p 157140.

    Article  CAS  Google Scholar 

  14. W. Liao, Z. Wu, W. Lu, M. He, T. Wang, Z. Guo and J. Huang, Microstructures and Mechanical Properties of CoCrFeNiMn High-entropy Alloy Coatings by Detonation Spraying, Intermetallics, 2021, 132, p 107138.

    Article  CAS  Google Scholar 

  15. Y.P. Cai, G.J. Wang, Y.J. Ma, Z.H. Cao and X.K. Meng, High Hardness Dual-Phase High Entropy Alloy Thin Films Produced by Interface Alloying, Scripta Mater., 2018, 162, p 281–285.

    Article  Google Scholar 

  16. S. Zhao, L. He, X. Fan, C. Liu, J. Long, L. Wang, H. Chang, J. Wang and W. Zhang, Microstructure and Chloride Corrosion Property of Nanocrystalline AlTiCrNiTa High Entropy Alloy Coating on X80 Pipeline Steel, Surf. Coat. Technol., 2019, 375, p 215–220.

    Article  CAS  Google Scholar 

  17. B. Jin, N. Zhang, H. Yu, D. Hao and Y. Ma, AlxCoCrFeNiSi High Entropy Alloy Coatings with High Microhardness and Improved Wear Resistance, Surf. Coat. Technol., 2020, 402, p 126328.

    Article  CAS  Google Scholar 

  18. W. Hsu, H. Murakami, J. Yeh, A. Yeh and K. Shimoda, On the Study of Thermal-Sprayed Ni0.2Co0.6Fe0.2CrSi0.2AlTi0.2 HEA Overlay Coating, Surf. Coat. Technol., 2017, 316, p 71–74.

    Article  CAS  Google Scholar 

  19. Q. Ye, K. Feng, Z. Li, F. Lu, R. Li, J. Huang and Y. Wu, Microstructure and Corrosion Properties of CrMnFeCoNi High Entropy Alloy Coating, Appl. Surf. Sci., 2017, 396, p 1420–1426.

    Article  CAS  Google Scholar 

  20. P. Yang, Y. Liu, X. Zhao and J. Cheng, Electromagnetic Wave Absorption Properties of Mechanically Alloyed FeCoNiCrAl High Entropy Alloy Powders, Adv. Powder Technol., 2016, 27, p 1128–1133.

    Article  CAS  Google Scholar 

  21. I.A. Alhafez, C.J. Ruestes, E.M. Bringa and H.M. Urbassek, Nanoindentation into a HEA: An Atomistic Study, J. Alloys Compd., 2019, 803, p 618–624.

    Article  Google Scholar 

  22. Z. Li, S. Zhao, R.O. Ritchie and M.A. Meyers, Mechanical Properties of HEAs with Emphasis on Face-Centered Cubic Alloys, Progress Mater. Sci., 2019, 102, p 296–345.

    Article  CAS  Google Scholar 

  23. T.M. Yue, H. Xie, X. Lin, H. Yang and G. Meng, Microstructure of Laser Re-Melted AlCoCrCuFeNi High Entropy Alloy Coatings Produced by Plasma Spraying, Entropy, 2013, 15, p 2833–2845.

    Article  CAS  Google Scholar 

  24. M.C. Troparevsky, J.R. Morris, M. Daene, Y. Wang, A.R. Lupini and G.M. Stocks, Beyond Atomic Sizes and Hume-Rothery Rules: Understanding and Predicting HEAs, JOM, 2015, 67, p 2350–2363.

    Article  CAS  Google Scholar 

  25. M. Calvo-Dahlborg and S.G.R. Brown, Hume-Rothery for HEA Classification and Self-Organizing Map for Phases and Properties Prediction, J. Alloy. Compd., 2017, 724, p 353–364.

    Article  CAS  Google Scholar 

  26. G. Sheng, N. Chun, L. Jian and C.T. Liu, Effect of Valence Electron Concentration on Stability of fcc or bcc Phase in High Entropy Alloys, J. Appl. Phys., 2011, 109, p 103505.

    Article  Google Scholar 

  27. J.H. Greenberg, Thermodynamic Basis of Crystal Growth, Springer, Berlin, 2002.

    Book  Google Scholar 

  28. K. Cheng, J. Chen, S. Stadler and S. Chen, Properties of Atomized AlCoCrFeNi HEA Powders and their Phase-Adjustable Coatings Prepared Via Plasma Spray Process, Appl. Surf. Sci., 2019, 478, p 478–486.

    Article  CAS  Google Scholar 

  29. A.S.M. Ang, C.C. Berndt, M.L. Sesso, A. Anupam, P.S.R.S. Kottada and B.S. Murty, Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi, Metall. Mater. Trans. A, 2015, 46, p 791–800.

    Article  CAS  Google Scholar 

  30. A. Anupam, R.S. Kottada, S. Kashyap, A. Meghwal, B.S. Murty, C.C. Berndt and A.S.M. Ang, Understanding the Microstructural Evolution of High Entropy Alloy Coatings Manufactured by Atmospheric Plasma Spray Processing, Appl. Surf. Sci., 2020, 505, p 144117.

    Article  CAS  Google Scholar 

  31. S.G. Ma, P.K. Liaw, M.C. Gao, J.W. Qiao, Z.H. Wang and Y. Zhang, Damping Behavior of AlxCoCrFeNi HEAs by a Dynamic Mechanical Analyzer, J. Alloy. Compd., 2014, 604, p 331–339.

    Article  CAS  Google Scholar 

  32. J. Xiao, Y. Wu, J. Chen, C. Zhang, Microstructure and Tribological Properties of Plasma Sprayed FeCoNiCrSiAlx High Entropy Alloy Coatings. Wear, 2020, 448–449, p 203209.

  33. H. Zhang, Y. He, Ye. Pan and L. Pei, Phase Selection, Microstructure and Properties of Laser Rapidly Solidified FeCoNiCrAl2Si Coating, Intermetallics, 2011, 19, p 1130–1135.

    Article  CAS  Google Scholar 

  34. X. Qiu and C. Liu, Microstructure and Properties of Al2CrFeCoCuTiNix High-entropy Alloys Prepared by Laser Cladding, J. Alloy. Compd., 2013, 553, p 216–220.

    Article  CAS  Google Scholar 

  35. S. Zhang, C.L. Wu, J.Z. Yi and C.H. Zhang, Synthesis and Characterization of FeCoCrAlCu High-entropy Alloy Coating by Laser Surface Alloying, Surf. Coat. Technol., 2015, 262, p 64–69.

    Article  CAS  Google Scholar 

  36. X. Ye, M. Ma, Y. Cao, W. Liu and YuGu. Xiaohui Ye, The Property Research on High-entropy Alloy AlxFeCoNiCuCr Coating by Laser Cladding, Phys. Procedia, 2011, 12, p 303–312.

    Article  CAS  Google Scholar 

  37. H. Liu, J. Liu, X. Li, P. Chen, H. Yang and J. Hao, Effect of Heat Treatment on Phase Stability and Wear Behavior of Laser Clad AlCoCrFeNiTi0.8 High-entropy Alloy Coatings, Surf. Coat. Technol., 2020, 392, p 125758.

    Article  CAS  Google Scholar 

  38. L. Chen, K. Bobzin, Z. Zhou, L. Zhao, M. Öte, T. Königstein, Z. Tan and D. He, Wear behavior of HVOF-sprayed Al0.6TiCrFeCoNi high entropy alloy coatings at different temperatures, Surf. Coat. Technol., 2019, 358, p 215–222.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial supports of the National Natural Science Foundation of China (51372065) and Natural Science Foundation of Hebei Province (E2015202190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanchun Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, M., Mao, X., Lv, Y. et al. Comparison of Micro-nano FeCoNiCrAl and FeCoNiCrMn Coatings Prepared from Mechanical Alloyed High-entropy Alloy Powders. J Therm Spray Tech 30, 1666–1678 (2021). https://doi.org/10.1007/s11666-021-01210-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-021-01210-1

Keywords

Navigation