Skip to main content
Log in

Effect of Spray Parameters in a Spray Flame Reactor During FexOy Nanoparticles Synthesis

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Synthesis and characterization of FexOy nanoparticles were carried out in order to study reaction parameters influence in a spray flame reactor. FexOy powders were prepared with three different precursors aiming to understand how the reactor conditions, dispersion gas flow, and precursor solution flow affect morphology, shape, particle size distribution, crystalline phases, and residue content of the obtained materials. Thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy (TEM), x-ray diffraction (XRD), and Raman spectroscopy were employed to characterize the materials. In addition, magnetic behavior of the obtained samples was evaluated. It was found that the evaluated parameters influenced the residue contents obtaining weight changes from 10 to 35%. Particle size distribution centers also showed differences between 17 and 24 nm. By XRD, Raman, and TEM, the presence of hematite (a-Fe2O3), maghemite (γ-Fe2O3), and magnetite (Fe3O4) was evidenced and explained based on the gas and liquid content in the flame. Additionally, the saturation magnetization was measured for selected samples, obtaining values between 26 and 32 emu g−1. These magnetic measurements were correlated with the crystalline phase composition and particle size distributions.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, and R.N. Muller, Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications, Chem. Rev., 2008, 108(6), p 2064-2110

    Article  CAS  Google Scholar 

  2. S. Rajput, L.P. Singh, C.U. Pittman, and D. Mohan, Lead (Pb2+) and Copper (Cu2+) Remediation from Water Using Superparamagnetic Maghemite (γ-Fe2O3) Nanoparticles Synthesized by Flame Spray Pyrolysis (FSP), J. Colloid Interface Sci., 2017, 492, p 176-190. https://doi.org/10.1016/j.jcis.2016.11.095

    Article  CAS  Google Scholar 

  3. A. Afkhami, M. Saber-Tehrani, and H. Bagheri, Modified Maghemite Nanoparticles as an Efficient Adsorbent for Removing Some Cationic Dyes from Aqueous Solution, Desalination, 2010, 263(1-3), p 240-248. https://doi.org/10.1016/j.desal.2010.06.065

    Article  CAS  Google Scholar 

  4. A.D. Abid, M. Kanematsu, T.M. Young, and I.M. Kennedy, Arsenic Removal from Water Using Flame-Synthesized Iron Oxide Nanoparticles with Variable Oxidation States, Aerosol Sci. Technol., 2013, 47(2), p 169-176

    Article  CAS  Google Scholar 

  5. O. Blatt, M. Helmich, B. Steuten, S. Hardt, D. Bathen, and H. Wiggers, Iron Oxide/Polymer-Based Nanocomposite Material for Hydrogen Sulfide Adsorption Applications, Chem. Eng. Technol., 2014, 37(11), p 1938-1944

    Article  CAS  Google Scholar 

  6. J. Harra, J.P. Nikkanen, M. Aromaa, H. Suhonen, M. Honkanen, T. Salminen, S. Heinonen, E. Levänen, and J.M. Mäkelä, Gas Phase Synthesis of Encapsulated Iron Oxide-Titanium Dioxide Composite Nanoparticles by Spray Pyrolysis, Powder Technol., 2013, 243, p 46-52. https://doi.org/10.1016/j.powtec.2013.03.027

    Article  CAS  Google Scholar 

  7. G. Litt and C. Almquist, An Investigation of CuO/Fe2O3 Catalysts for the Gas-Phase Oxidation of Ethanol, Appl. Catal. B Environ., 2009, 90(1-2), p 10-17

    Article  CAS  Google Scholar 

  8. N. Zhao, W. Ma, Z. Cui, W. Song, C. Xu, and M. Gao, Polyhedral Maghemite Nanocrystals Prepared by a Flame Synthetic Method: Preparations, Characterizations, and Catalytic Properties, ACS Nano, 2009, 3(7), p 1775-1780

    Article  CAS  Google Scholar 

  9. Y. Li, Y. Hu, G. Huang, and C. Li, Metallic Iron Nanoparticles: Flame Synthesis, Characterization and Magnetic Properties, Particuology, Chinese Society of, Particuology, 2013, 11(4), p 460-467. https://doi.org/10.1016/j.partic.2012.10.008

    Article  CAS  Google Scholar 

  10. D. Flak, A. Braun, A. Vollmer, and M. Rekas, Effect of the Titania Substitution on the Electronic Structure and Transport Properties of FSS-Made Fe2O3 Nanoparticles for Hydrogen Sensing, Sensors Actuators, B Chem., 2013, 187, p 347-355. https://doi.org/10.1016/j.snb.2012.12.038

    Article  CAS  Google Scholar 

  11. T. Kim and B. Guo, Zn-Doped Fe2O3 Sensors for Flammable Gas Detection: Effect of Annealing on Sensitivity and Stability, J. Ind. Eng. Chem., 2011, 17(1), p 158-164. https://doi.org/10.1016/j.jiec.2010.12.016

    Article  CAS  Google Scholar 

  12. S. Inamdar, H.-S. Choi, M.-S. Kim, K. Chaudhari, and J.-S. Yu, Flame Synthesis of 26-Faceted Maghemite Polyhedrons Grown via 14-Faceted Polyhedrons and Their Carbon Composites for Li-Ion Battery Application, CrystEngComm, 2012, 14(20), p 7009. https://doi.org/10.1039/c2ce26146d

    Article  CAS  Google Scholar 

  13. I. Jönkkäri, M. Sorvali, H. Huhtinen, E. Sarlin, T. Salminen, J. Haapanen, J.M. Mäkelä, and J. Vuorinen, Characterization of Bidisperse Magnetorheological Fluids Utilizing Maghemite (γ-Fe2O3) Nanoparticles Synthetized by Flame Spray Pyrolysis, Smart Mater. Struct., 2017, 26(9), p 095004. https://doi.org/10.1088/1361-665x/aa7f7d

    Article  CAS  Google Scholar 

  14. C.F.A. Vogel, J.G. Charrier, D. Wu, A.S. McFall, W. Li, A. Abid, I.M. Kennedy, and C. Anastasio, Physicochemical Properties of Iron Oxide Nanoparticles That Contribute to Cellular ROS-Dependent Signaling and Acellular Production of Hydroxyl Radical, Free Radic. Res., 2016, 50(11), p 1153-1164. https://doi.org/10.3109/10715762.2016.1152360

    Article  CAS  Google Scholar 

  15. K. Buyukhatipoglu, T.A. Miller, and A.M. Clyne, Flame Synthesis and In Vitro Biocompatibility Assessment of Superparamagnetic Iron Oxide Nanoparticles: Cellular Uptake, Toxicity and Proliferation Studies, J. Nanosci. Nanotechnol., 2009, https://doi.org/10.1166/jnn.2009.1477

    Article  Google Scholar 

  16. B. Guo and I.M. Kennedy, Gas-Phase Flame Synthesis and Characterization of Iron Oxide Nanoparticles for Use in a Health Effects Study, Aerosol Sci. Technol., 2007, 41(10), p 944-951

    Article  CAS  Google Scholar 

  17. D. Li, W.Y. Teoh, C. Selomulya, R.C. Woodward, R. Amal, and B. Rosche, Flame-Sprayed Superparamagnetic Bare and Silica-Coated Maghemite Nanoparticles: Synthesis, Characterization, and Protein Adsorption-Desorption, Chem. Mater., 2006, 18(26), p 6403-6413

    Article  CAS  Google Scholar 

  18. S. Kluge, L. Deng, O. Feroughi, F. Schneider, M. Poliak, A. Fomin, V. Tsionsky, S. Cheskis, I. Wlokas, I. Rahinov, T. Dreier, A. Kempf, H. Wiggers, and C. Schulz, Initial Reaction Steps during Flame Synthesis of Iron-Oxide Nanoparticles, CrystEngComm, 2015, 17(36), p 6930-6939. https://doi.org/10.1039/C5CE00456J

    Article  CAS  Google Scholar 

  19. W.Y. Teoh, R. Amal, and L. Mädler, Flame Spray Pyrolysis: An Enabling Technology for Nanoparticles Design and Fabrication, Nanoscale, 2010, 2(8), p 1324-1347

    Article  CAS  Google Scholar 

  20. R. Koirala, S.E. Pratsinis, and A. Baiker, Synthesis of Catalytic Materials in Flames: Opportunities and Challenges, Chem. Soc. Rev., 2016, 45(11), p 3053-3068. https://doi.org/10.1039/c5cs00011d

    Article  CAS  Google Scholar 

  21. J.D. Judy, J.M. Unrine, W. Rao, S. Wirick, and P.M. Bertsch, Bioavailability of Gold Nanomaterials to Plants: Importance of Particle Size and Surface Coating, Environ. Sci. Technol., 2012, 46(15), p 8467-8474

    Article  CAS  Google Scholar 

  22. R. Jossen, S.E. Pratsinis, W.J. Stark, and L. Mädler, Criteria for Flame-Spray Synthesis of Hollow, Shell-like, or Inhomogeneous Oxides, J. Am. Ceram. Soc., 2005, 88(6), p 1388-1393

    Article  CAS  Google Scholar 

  23. R. Strobel and S.E. Pratsinis, Flame Aerosol Synthesis of Smart Nanostructured Materials, J. Mater. Chem., 2007, 17(45), p 4743-4756

    Article  CAS  Google Scholar 

  24. K. Buyukhatipoglu and A. Morss Clyne, Controlled Flame Synthesis of ΑFe2O3 and Fe3O4 Nanoparticles: Effect of Flame Configuration, Flame Temperature, and Additive Loading, J. Nanoparticle Res., 2010, 12(4), p 1495-1508

    Article  CAS  Google Scholar 

  25. P.M. Rao and X. Zheng, Rapid Catalyst-Free Flame Synthesis of Dense, Aligned α-Fe 2O 3 Nanoflake and CuO Nanoneedle Arrays, Nano Lett., 2009, 9(8), p 3001-3006

    Article  CAS  Google Scholar 

  26. D. Li, W.Y. Teoh, C. Selomulya, R.C. Woodward, P. Munroe, and R. Amal, Insight into Microstructural and Magnetic Properties of Flame-Made γ-Fe2O3 Nanoparticles, J. Mater. Chem., 2007, 17(46), p 4876. https://doi.org/10.1039/b711705a

    Article  CAS  Google Scholar 

  27. R. Strobel and S.E. Pratsinis, Direct Synthesis of Maghemite, Magnetite and Wustite Nanoparticles by Flame Spray Pyrolysis, Adv. Powder Technol., 2009, 20(2), p 190-194. https://doi.org/10.1016/j.apt.2008.08.002

    Article  CAS  Google Scholar 

  28. R. Mueller, L. Mädler, and S.E. Pratsinis, Nanoparticle Synthesis at High Production Rates by Flame Spray Pyrolysis, Chem. Eng. Sci., 2003, 58(10), p 1969-1976

    Article  CAS  Google Scholar 

  29. A.K. Gupta and M. Gupta, Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications, Biomaterials, 2005, 26(18), p 3995-4021. https://doi.org/10.1016/j.biomaterials.2004.10.012

    Article  CAS  Google Scholar 

  30. G. Cotin, S. Piant, D. Mertz, D. Felder-Flesch, and S. Begin-Colin, Iron Oxide Nanoparticles for Biomedical Applications: Synthesis, Functionalization, and Application, Iron Oxide Nanoparticles for Biomedical Applications, 2017, https://doi.org/10.1016/b978-0-08-101925-2.00002-4

    Article  Google Scholar 

  31. M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen, Superparamagnetic Iron Oxide Nanoparticles (SPIONs): Development, Surface Modification and Applications in Chemotherapy, Adv. Drug Deliv. Rev., 2011, 63(1-2), p 24-46. https://doi.org/10.1016/j.addr.2010.05.006

    Article  CAS  Google Scholar 

  32. S. Nizamuddin, M.T.. Siddiqui, N.M. Mubarak, H.A. Baloch, E.C. Abdullah, S.A. Mazari, G.J. Griffin, M.P. Srinivasan, and A. Tanksale, Iron Oxide Nanomaterials for the Removal of Heavy Metals and Dyes From Wastewater, Nanoscale Mater. Water Purif., 2018 (November), p 447-472.

  33. L.S. Zhong, J.S. Hu, H.P. Liang, A.M. Cao, W.G. Song, and L.J. Wan, Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment, Adv. Mater., 2006, 18(18), p 2426-2431

    Article  CAS  Google Scholar 

  34. J. Hu, G. Chen, and I.M.C. Lo, Removal and Recovery of Cr(VI) from Wastewater by Maghemite Nanoparticles, Water Res., 2005, 39(18), p 4528-4536

    Article  CAS  Google Scholar 

  35. V. Chandra, J. Park, Y. Chun, J.W. Lee, I.C. Hwang, and K.S. Kim, Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal, ACS Nano, 2010, 4(7), p 3979-3986

    Article  CAS  Google Scholar 

  36. S. Dixit and J.G. Hering, Comparison of Arsenic(V) and Arsenic(III) Sorption onto Iron Oxide Minerals: Implications for Arsenic Mobility, Environ. Sci. Technol., 2003, 37(18), p 4182-4189

    Article  CAS  Google Scholar 

  37. G.L. Chiarello, I. Rossetti, L. Forni, P. Lopinto, and G. Migliavacca, Solvent Nature Effect in Preparation of Perovskites by Flame-Pyrolysis. 1. Carboxylic Acids, Appl. Catal. B Environ., 2007, 72(3-4), p 218-226

    Article  CAS  Google Scholar 

  38. G.L. Chiarello, I. Rossetti, L. Forni, P. Lopinto, and G. Migliavacca, Solvent Nature Effect in Preparation of Perovskites by Flame Pyrolysis. 2. Alcohols and Alcohols + Propionic Acid Mixtures, Appl. Catal. B Environ., 2007, 72(3-4), p 227-232

    Article  CAS  Google Scholar 

  39. Y.K. Kho, W.Y. Teoh, L. Mädler, and R. Amal, Dopant-Free, Polymorphic Design of TiO2 Nanocrystals by Flame Aerosol Synthesis, Chem. Eng. Sci., 2011, 66(11), p 2409-2416

    Article  CAS  Google Scholar 

  40. L. Mädler, H.K. Kammler, R. Mueller, and S.E. Pratsinis, Controlled Synthesis of Nanostructured Particles by Flame Spray Pyrolysis, J. Aerosol Sci., 2002, 33(2), p 369-389. https://doi.org/10.1016/S0021-8502(01)00159-8

    Article  Google Scholar 

  41. L. Mädler, W.J. Stark, S.E. Pratsinis, and L. Ma, Flame-Made Ceria Nanoparticles, J. Mater. Res., 2002, 17(6), p 1356-1362

    Article  Google Scholar 

  42. L. Mädler and S.E. Pratsinis, Bismuth Oxide Nanoparticles by Flame Spray Pyrolysis, J. Am. Ceram. Soc., 2004, 85(7), p 1713-1718. https://doi.org/10.1111/j.1151-2916.2002.tb00340.x

    Article  Google Scholar 

  43. O. Waser, R. Büchel, A. Hintennach, P. Novák, and S.E. Pratsinis, Continuous Flame Aerosol Synthesis of Carbon-Coated Nano-LiFePO4 for Li-Ion Batteries, J. Aerosol Sci., 2011, 42(10), p 657-667

    Article  CAS  Google Scholar 

  44. S. Li, Y. Ren, P. Biswas, and S.D. Tse, Flame Aerosol Synthesis of Nanostructured Materials and Functional Devices : Processing, Modeling, and Diagnostics, Prog. Energy Combust. Sci., 2016, 55, p 1-59

    Article  CAS  Google Scholar 

  45. A.J. Gröhn, S.E. Pratsinis, A. Sánchez-Ferrer, R. Mezzenga, and K. Wegner, Scale-up of Nanoparticle Synthesis by Flame Spray Pyrolysis: The High-Temperature Particle Residence Time, Ind. Eng. Chem. Res., 2014, 53(26), p 10734-10742

    Article  Google Scholar 

  46. T. Kim, A. Sharp, and B. Guo, Effect of Synthesis Condition and Annealing on the Sensitivity and Stability of Gas Sensors Made of Zn-Doped Gamma-Fe2O3 Particles, Korean J. Chem. Eng., 2010, 27(3), p 1003-1009

    Article  CAS  Google Scholar 

  47. W. Merchan-Merchan, A.V. Saveliev, and A.M. Taylor, High Rate Flame Synthesis of Highly Crystalline Iron Oxide Nanorods, Nanotechnology, 2008, 19(12), p 125605. https://doi.org/10.1088/0957-4484/19/12/125605

    Article  CAS  Google Scholar 

  48. G.H. Evans, W.G. Houf, R. Greif, and C. Crowe, Numerical Modeling of a Solid Particle Solar Central Receiver, SANDIA Rep., 1985, (SAND85-8249 December), https://doi.org/10.2172/6315392.

  49. M. Smith, G. Gregory, F. David, M. Michael; , E. Nigel, and G. Boris, GRI Mech 3.0,” n.d., https://doi.org/http://www.me.berkeley.edu/gri_mech/.

  50. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, Fiji: An Open-Source Platform for Biological-Image Analysis, Nat. Methods, 2012, 9, p 676-682

    Article  CAS  Google Scholar 

  51. A. Teleki, M.C. Heine, F. Krumeich, M.K. Akhtar, and S.E. Pratsinis, In Situ Coating of Flame-Made TiO2 Particles with Nanothin SiO2 Films, Langmuir, 2008, 24(21), p 12553-12558

    Article  CAS  Google Scholar 

  52. GUW, Polymer Physics, Chapmann & Hall, London, 1995

    Google Scholar 

  53. R.M. Cornell and U. Schwertmann, “The Iron Oxides. Structure, Properties, Reactions, Occurrences and Uses,” 2003.

  54. A.M. Jubb and H.C. Allen, Vibrational Spectroscopic Characterization of Hematite, Maghemite, and Magnetite Thin Films Produced by Vapor Deposition, ACS Appl. Mater. Interfaces., 2010, 2(10), p 2804-2812

    Article  CAS  Google Scholar 

  55. O.N. Shebanova and P. Lazor, Raman Study of Magnetite (Fe3O4): Laser-Induced Thermal Effects and Oxidation, J. Raman Spectrosc., 2003, 34(11), p 845-852

    Article  CAS  Google Scholar 

  56. D.L.A. de Faria, S. Venâncio Silva, and M.T. Oliveira, Raman Microspectroscopy of Some Iron Oxides and Oxyhydroxides, J. Raman Spectrosc., 1997, 28(11), p 873-878. https://doi.org/10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B

    Article  Google Scholar 

  57. L.S. Darken and R.W. Gurry, The System Iron-Oxygen. II. Equilibrium and Thermodynamics of Liquid Oxide and Other Phases, J. Am. Chem. Soc., 1946, 68(5), p 798-816

    Article  CAS  Google Scholar 

  58. Y. Li, Y. Hu, H. Jiang, and C. Li, Double-Faced γ-Fe2O3||SiO2 Nanohybrids: Flame Synthesis, in Situ Selective Modification and Highly Interfacial Activity, Nanoscale, 2013, 5(12), p 5360. https://doi.org/10.1039/c3nr01087b

    Article  CAS  Google Scholar 

  59. D. Li, W.Y. Teoh, R.C. Woodward, J.D. Cashion, C. Selomulya, and R. Amal, Evolution of Morphology and Magnetic Properties in Silica/Maghemite Nanocomposites, J. Phys. Chem., 2009, 113, p 12040-12047

    CAS  Google Scholar 

  60. J. Frenkel and J. Dorfman, Spontaneous and Induced Magnetisation in Ferromagnetic Bodies, Nature, 1930, 126(3173), p 274-275

    Article  Google Scholar 

  61. F.G. Aliev, M.A. Correa-Duarte, A. Mamedov, J.W. Ostrander, M. Giersig, L.M. Liz-Marzán, and N.A. Kotov, Layer-By-Layer Assembly of Core-Shell Magnetite Nanoparticles: Effect of Silica Coating on Interparticle Interactions and Magnetic Properties, Adv. Mater., 1999, 11(12), p 1006-1010. https://doi.org/10.1002/(SICI)1521-4095(199908)11:12<1006::AID-ADMA1006>3.0.CO;2-2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge Universidad de Antioquia (CODI) for the founding (Codigo 20157828). Luisa Carvajal acknowledges COLCIENCIAS for the scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Gallego.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvajal, L., Buitrago-Sierra, R., Santamaría, A. et al. Effect of Spray Parameters in a Spray Flame Reactor During FexOy Nanoparticles Synthesis. J Therm Spray Tech 29, 368–383 (2020). https://doi.org/10.1007/s11666-020-00991-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-00991-1

Keywords

Navigation