Skip to main content

Advertisement

Log in

Investigation on Relationship Between Microstructural Characteristics and Mechanical Properties of Wire-Arc-Sprayed Zn-Al Coating

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Wire arc spraying is a cost-effective thermal spraying technology to deposit a protective coating layer on the surface of industrial components. Mechanical properties of wire arc spraying coatings are mainly influenced by their heterogeneous microstructure, resulting in complex and anisotropic mechanical properties. The objective of this investigation is to characterize the mechanical behavior of wire-arc-sprayed Zn-15Al alloy using an efficient micromechanical–computational scheme. Scanning electron microscopy images were imported to an object-oriented finite element scheme and distinguished into various phases, and then subsequently discretized into finite elements. To examine the validity of this technique, experimental studies, such as Knoop and Vickers microhardness, resonance frequency, and nanoindentation, were conducted on the freestanding coating samples. The elastic modulus of the coating was also calculated using well-known analytical methods. Comparison of the results obtained in this study was used to investigate the relationship between the microstructural features and mechanical properties in coating materials. Image-based finite element analysis showed good agreement with the experimental measurements and proved the effect of splat boundaries on the reduction in mechanical strength between coating layers and, consequently, lower elastic modulus of the wire-arc-sprayed Zn-15Al coating in the longitudinal direction compared to the transversal one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, Wiley, New York, 2008

    Book  Google Scholar 

  2. J.R. Davis, Handbook of Thermal Spray Technology, ASM International, Cleveland, 2004

    Google Scholar 

  3. E.A. Esfahani, H. Salimijazi, M.A. Golozar, J. Mostaghimi, and L. Pershin, Study of Corrosion Behavior of Arc Sprayed Aluminum Coating on Mild Steel, J. Therm. Spray Technol., 2012, 21(6), p 1195-1202

    Article  CAS  Google Scholar 

  4. S. Kuroda, J. Kawakita, and M. Takemoto, An 18-Year Exposure Test of Thermal-Sprayed Zn, Al, and Zn-Al Coatings in Marine Environment, Corrosion, 2006, 62(7), p 635-647

    Article  CAS  Google Scholar 

  5. K. Szymański, A. Hernas, G. Moskal, and H. Myalska, Thermally Sprayed Coatings Resistant to Erosion and Corrosion for Power Plant Boilers-A Review, Surf. Coat. Technol., 2015, 268, p 153-164

    Article  CAS  Google Scholar 

  6. M.S. Okyere, Corrosion Protection for the Oil and Gas Industry: Pipelines, Subsea Equipment, and Structures, CRC Press, Cambridge, 2019

    Book  Google Scholar 

  7. V. Gusev, N. Nesterenko, M. Il’ichev, P. Konovalov, and A. Tyuftyaev, Study of Coating Corrosion Resistance for Shelf Structural Objects and Oil Industry Equipment, Chem. Petrol. Eng., 2018, 53(11–12), p 745-749

    Article  Google Scholar 

  8. A. Gulec, O. Cevher, A. Turk, F. Ustel, and F. Yilmaz, Accelerated Corrosion Behaviors of Zn, Al and Zn/15Al Coatings on a Steel Surface, Materiali in Tehnologije, 2011, 45(5), p 477-482

    CAS  Google Scholar 

  9. O. Fayomi and M. Popoola, Comparative Studies of Microstructural, Tribological and Corrosion Properties of Plated Zn and Zn-Alloy Coatings, Int. J. Electrochem. Sci., 2012, 7, p 4860-4870

    Google Scholar 

  10. S.F. Bonabi, F. Ashrafizadeh, A. Sanati, and S.M. Nahvi, Structure and Corrosion Behavior of Arc-Sprayed Zn-Al Coatings on Ductile Iron Substrate, J. Therm. Spray Technol., 2018, 27(3), p 524-537

    Article  CAS  Google Scholar 

  11. B. Shaw and P.J. Moran, Characterization of the Corrosion Behavior of Zinc-Aluminum Thermal Spray Coatings, Mater. Perform., 1985, 24(11), p 22-31

    CAS  Google Scholar 

  12. T.-C. Chen, C.-C. Chou, T.-Y. Yung, K.-C. Tsai, and J.-Y. Huang, Wear Behavior of Thermally Sprayed Zn/15Al, Al and Inconel 625 Coatings on Carbon Steel, Surf. Coat. Technol., 2016, 303, p 78-85

    Article  CAS  Google Scholar 

  13. P.L. Fauchais, J.V. Heberlein, and M.I. Boulos, Wire Arc Spraying, Thermal Spray Fundamentals, Springer, Berlin, 2014, p 577-629

    Book  Google Scholar 

  14. D. Schwingel, R. Taylor, T. Haubold, J. Wigren, and C. Gualco, Mechanical and Thermophysical Properties of Thick PYSZ Thermal Barrier Coatings: Correlation with Microstructure and Spraying Parameters, Surf. Coat. Technol., 1998, 108, p 99-106

    Article  Google Scholar 

  15. S. Kweh, K. Khor, and P. Cheang, Plasma-Sprayed Hydroxyapatite (HA) Coatings with Flame-Spheroidized Feedstock: Microstructure and Mechanical Properties, Biomaterials, 2000, 21(12), p 1223-1234

    Article  CAS  Google Scholar 

  16. R. Lima, J. Karthikeyan, C. Kay, J. Lindemann, and C. Berndt, Microstructural Characteristics of Cold-Sprayed Nanostructured WC–Co Coatings, Thin Solid Films, 2002, 416(1–2), p 129-135

    Article  CAS  Google Scholar 

  17. S. Deshpande, A. Kulkarni, S. Sampath, and H. Herman, Application of Image Analysis for Characterization of Porosity in Thermal Spray Coatings and Correlation with Small Angle Neutron Scattering, Surf. Coat. Technol., 2004, 187(1), p 6-16

    Article  CAS  Google Scholar 

  18. M. Bashirzadeh, F. Azarmi, C. Leither, and G. Karami, Investigation on Relationship Between Mechanical Properties and Microstructural Characteristics of Metal Matrix Composites Fabricated by Cold Spraying Technique, Appl. Surf. Sci., 2013, 275, p 208-216

    Article  CAS  Google Scholar 

  19. Z. Wang, A. Kulkarni, S. Deshpande, T. Nakamura, and H. Herman, Effects of Pores and Interfaces on Effective Properties of Plasma Sprayed Zirconia Coatings, Acta Mater., 2003, 51(18), p 5319-5334

    Article  CAS  Google Scholar 

  20. B. Jahani, M. Salimi Jazi, F. Azarmi, and A. Croll, Effect of Volume Fraction of Reinforcement Phase on Mechanical Behavior of Ultra-High-Temperature Composite Consisting of Iron Matrix and TiB2 Particulates, J. Compos. Mater., 2018, 52(5), p 609-620

    Article  CAS  Google Scholar 

  21. ASTM E-03, Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis (2003)

  22. A.S.M. Ang and C.C. Berndt, A Review of Testing Methods for Thermal Spray Coatings, Int. Mater. Rev., 2014, 59(4), p 179-223

    Article  CAS  Google Scholar 

  23. C. Leither, J. Risan, M. Bashirzadeh, and F. Azarmi, Determination of the Elastic Modulus of Wire Arc Sprayed Alloy 625 Using Experimental, Analytical, and Numerical Simulations, Surf. Coat. Technol., 2013, 235, p 611-619

    Article  CAS  Google Scholar 

  24. M.A. Meyers and K.K. Chawla, Mechanical Behavior of Materials, 2nd ed., Cambridge University Press, Cambridge, 2009

    Google Scholar 

  25. D.B. Marshall, T. Noma, and A.G. Evans, A Simple Method for Determining Elastic-Modulus–to-Hardness Ratios using Knoop Indentation Measurements, J. Am. Ceram. Soc., 1982, 65(10), p c175-c176

    Article  CAS  Google Scholar 

  26. N. Meredith, M. Sherriff, D. Setchell, and S. Swanson, Measurement of the Microhardness and Young’s Modulus of Human Enamel and Dentine Using an Indentation Technique, Arch. Oral Biol., 1996, 41(6), p 539-545

    Article  CAS  Google Scholar 

  27. H.E. Boyer, Hardness Testing, ASM International, Metals Park, OH, 1987

    Google Scholar 

  28. Y. Zhang, L. Yang, X. Zeng, B. Zheng, and Z. Song, The Mechanism of Anneal-Hardening Phenomenon in Extruded Zn–Al Alloys, Mater. Des., 2013, 50, p 223-229

    Article  CAS  Google Scholar 

  29. D. Chicot, H. Ageorges, M. Voda, G. Louis, M.B. Dhia, C. Palacio, and S. Kossman, Hardness of Thermal Sprayed Coatings: Relevance of the Scale of Measurement, Surf. Coat. Technol., 2015, 268, p 173-179

    Article  CAS  Google Scholar 

  30. D.J. Shuman, A.L. Costa, and M.S. Andrade, Calculating the Elastic Modulus from Nanoindentation and Microindentation Reload Curves, Mater. Charact., 2007, 58(4), p 380-389

    Article  CAS  Google Scholar 

  31. M. Dejun, O.C. Wo, J. Liu, and H. Jiawen, Determination of Young’s Modulus by Nanoindentation, Sci. China Ser. E Technol. Sci., 2004, 47(4), p 398-408

    Article  CAS  Google Scholar 

  32. CES Edupack 2018, Granta Design, 2018

  33. F. Azarmi, T. Coyle, and J. Mostaghimi, Young’s Modulus Measurement and Study of the Relationship Between Mechanical Properties and Microstructure of Air Plasma Sprayed Alloy 625, Surf. Coat. Technol., 2009, 203(8), p 1045-1054

    Article  CAS  Google Scholar 

  34. C.H. Hsueh, J.A. Haynes, M.J. Lance, P.F. Becher, M.K. Ferber, E.R. Fuller, S.A. Langer, W.C. Carter, and W.R. Cannon, Effects of Interface Roughness on Residual Stresses in Thermal Barrier Coatings, J. Am. Ceram. Soc., 1999, 82(4), p 1073-1075

    Article  CAS  Google Scholar 

  35. Z. Hashin, The Elastic Moduli of Heterogeneous Materials, J. Appl. Mech., 1962, 29(1), p 143-150

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Department of Transportation (DOT) and Pipeline and Hazardous Materials Safety Administration (PHMSA). The authors would also like to acknowledge the help of NDSU Electron Microscopy Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fardad Azarmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darabi, A., Azarmi, F. Investigation on Relationship Between Microstructural Characteristics and Mechanical Properties of Wire-Arc-Sprayed Zn-Al Coating. J Therm Spray Tech 29, 297–307 (2020). https://doi.org/10.1007/s11666-019-00919-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-019-00919-4

Keywords

Navigation