Skip to main content

Advertisement

Log in

Development and Characterization of High-Velocity Flame Sprayed Ni/TiO2/Al2O3 Coatings on Hydro Turbine Steel

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Nickel-based coatings deposited by high-velocity flame spray (HVFS) process have been widely used to overcome the slurry erosion in a hydro turbine, where many turbine components are subjected to severe erosion failure. In this work, new kind of multi-dimensional Ni-40TiO2 and Ni-20TiO2-20Al2O3 coatings consisting of nanostructured and micron-sized particles of TiO2 and Al2O3 were developed by HVFS process on CA6NM(13Cr4Ni) turbine steel. The in-depth characterization of the synthesized nanostructured powders, prepared coating compositions and the deposited coating was done through dynamic light scattering, scanning electron microscopy, energy-dispersive spectroscopy and x-ray diffraction techniques. The mechanical and microstructural properties of the as-sprayed specimens were evaluated and discussed in this paper. The results showed that the multi-dimensional Ni-40TiO2 coating possessed lower porosity (0.8-2.0%), higher avg. microhardness (605 ± 37 HV0.1), and better bond strength (66.4 MPa) than the Ni-20TiO2-20Al2O3 coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. V. Sharma, M. Kaur, and S. Bhandari, Slurry Jet Erosion Performance of High-Velocity Flame-Sprayed Nano Mixed Ni-40Al2O3 Coating in Aggressive Environment, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 2019, https://doi.org/10.1177/1350650118822426

    Article  Google Scholar 

  2. M.K. Padhy and R.P. Saini, Effect of Size and Concentration of Silt Particles on Erosion of Pelton Turbine Buckets, Energy, 2009, 34(10), p 1477-1483. https://doi.org/10.1016/j.energy.2009.06.015

    Article  CAS  Google Scholar 

  3. M.K. Padhy and R.P. Saini, A Review on Silt Erosion in Hydro Turbines, Renew. Sustain. Energy Rev., 2008, 12(7), p 1974-1987

    Article  Google Scholar 

  4. V. Sharma, M. Kaur, and S. Bhandari, Slurry Erosion Performance Study of High Velocity Flame Sprayed Ni-Al2O3 Coating Under Hydro Accelerated Conditions, Mater. Res. Express, 2019, 2019(6), p 1-17. https://doi.org/10.1088/2053-1591/ab1927

    Article  Google Scholar 

  5. H.S. Grewal, A. Agrawal, H. Singh, and B.A. Shollock, Slurry Erosion Performance of Ni-Al2O3 based Thermal-Sprayed Coatings: Effect of Angle of Impingement, J. Therm. Spray Technol., 2014, 23(3), p 389-401

    Article  CAS  Google Scholar 

  6. H.S. Grewal, H. Singh, and A. Agrawal, Microstructural and Mechanical Characterization of Thermal Sprayed Nickel-Alumina Composite Coatings, Surf. Coat. Technol., 2013, 216, p 78-92. https://doi.org/10.1016/j.surfcoat.2012.11.029

    Article  CAS  Google Scholar 

  7. R. Kumar, S. Bhandari, and A. Goyal, Slurry Erosion Performance of High-Velocity Flame-Sprayed Ni-20Al2O3 and Ni-10Al2O3-10TiO2 Coatings Under Accelerated Conditions, J. Therm. Spray Technol., 2017, 26(6), p 1279-1291

    Article  CAS  Google Scholar 

  8. B.E. Naveena, R. Keshavamurthy, and N. Sekhar, Slurry Erosive Wear Behaviour of Plasma-Sprayed Flyash–Al2O3 Coatings, Surf. Eng., 2017, 33(12), p 925-935

    Article  CAS  Google Scholar 

  9. R. Kumar, S. Bhandari, and A. Goyal, Synergistic Effect of Al2O3/TiO2 Reinforcements on Slurry Erosion Performance of Nickel-Based Composite Coatings, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 2017, https://doi.org/10.1177/1350650117736487

    Article  Google Scholar 

  10. D. Wang, Z. Tian, S. Wang, L. Shen, and Y. Huang, Solid Particle Erosion Behaviour of Plasma-Sprayed Conventional and Nanostructured Al2O3-13 wt% TiO2 Ceramic Coatings, Trans. Indian Ceram. Soc., 2015, 74(2), p 90-96. https://doi.org/10.1080/0371750X.2015.1036169

    Article  CAS  Google Scholar 

  11. M. Benegra, M. Magnani, H. Goldenstein, O. Maranho, and G. Pintaude, Abrasion and Corrosion Resistance of New Ni-Based Coating Deposited by HVOF Thermal Spray Process, Surf. Eng., 2010, 26(6), p 463-468. https://doi.org/10.1179/026708410X12550773058144

    Article  CAS  Google Scholar 

  12. B. Thiyagarajan and V. Senthilkumar, Experimental Studies on Fly-Ash Erosion Behavior of Ni-Cr Based Nanostructured Thermal Spray Coating in Boiler Tubes, Mater. Manuf. Process., 2017, 32(11), p 1209-1217. https://doi.org/10.1080/10426914.2016.1257798

    Article  CAS  Google Scholar 

  13. C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater. Sci., 2001, 46(1–2), p 1-184. https://doi.org/10.1016/s0079-6425(99)00010-9

    Article  CAS  Google Scholar 

  14. W. Chen, Y. He, and W. Gao, Electrodeposition of Sol-Enhanced Nanostructured Ni-TiO2 Composite Coatings, Surf. Coat. Tech., 2010, 204(15), p 2487-2492. https://doi.org/10.1016/j.surfcoat.2010.01.036

    Article  CAS  Google Scholar 

  15. S. Lajevardi and T. Shahrabi, Effects of Pulse Electrodeposition Parameters on the Properties of Ni-TiO2 Nanocomposite Coatings, Appl. Surf. Sci., 2010, 256(22), p 6775-6781. https://doi.org/10.1016/j.apsusc.2010.04.088

    Article  CAS  Google Scholar 

  16. G. Parida, D. Chaira, M. Chopkar, and A. Basu, Synthesis and Characterization of Ni-TiO2 composite Coatings by Electro-Co-Deposition, Surf. Coat. Technol., 2011, 205(21–22), p 4871-4879. https://doi.org/10.1016/j.surfcoat.2011.04.102

    Article  CAS  Google Scholar 

  17. M.L. Benea and L.P. Benea, Characterization of the WC Coatings Deposited by Plasma Spraying, IOP Conf. Ser. Mater. Sci. Eng., 2015, 85(1), p 012004

    Article  Google Scholar 

  18. G.E. Kim, J. Falzon, J. Walker, F. Michael, and P. Nikki, Use of Nano-Particle Titanium Dioxide (n-TiO2) Thermal Spray Coatings for Abrasion Resistance in Severe Service Applications, in International Titanium Association, 2010.

  19. Y. Yang, D. Yan, Y. Dong, X. Chen, L. Wang, Z. Chu, J. Zhang, and J. He, Preparing of Nanostructured Al2O3-TiO2-ZrO2 composite Powders and Plasma Spraying Nanostructured Composite Coating, Vacuum, 2013, 96, p 39-45. https://doi.org/10.1016/j.vacuum.2013.03.010

    Article  CAS  Google Scholar 

  20. D. Thibault, P. Bocher, M. Thomas, J. Lanteigne, P. Hovington, and P. Robichaud, Reformed Austenite Transformation during Fatigue Crack Propagation of 13%Cr-4%Ni Stainless Steel, Mater. Sci. Eng. A, 2011, 528(21), p 6519-6526. https://doi.org/10.1016/j.msea.2011.04.089

    Article  CAS  Google Scholar 

  21. L.A. Espitia, L. Varela, C.E. Pinedo, and A.P. Tschiptschin, Cavitation Erosion Resistance of Low Temperature Plasma Nitrided Martensitic Stainless Steel, Wear, 2013, 301(1–2), p 449-456. https://doi.org/10.1016/j.wear.2012.12.029

    Article  CAS  Google Scholar 

  22. E. Furlani, E. Aneggi, C. de Leitenburg, and S. Maschio, High Energy Ball Milling of Titania and Titania-Ceria Powder Mixtures, Powder Technol., 2014, 254, p 591-596. https://doi.org/10.1016/j.powtec.2014.01.075

    Article  CAS  Google Scholar 

  23. X. Chen and S.S. Mao, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications and Applications, Chem. Rev., 2007, 107(7), p 2891-2959

    Article  CAS  Google Scholar 

  24. M.R. Ranade, A. Navrotsky, H.Z. Zhang, J.F. Banfield, S.H. Elder, A. Zaban, P.H. Borse, S.K. Kulkarni, G.S. Doran, and H.J. Whitfield, Energetics of Nanocrystalline TiO2, Proc. Natl. Acad. Sci. USA, 2002, 99(2), p 6476-6481. https://doi.org/10.1073/pnas.251534898

    Article  CAS  Google Scholar 

  25. A.K. Zak, W.H.A. Majid, M.E. Abrishami, and R. Yousefi, X-Ray Analysis of ZnO Nanoparticles by Williamson-Hall and Size-Strain Plot Methods, Solid State Sci., 2011, 13(1), p 251-256

    Article  Google Scholar 

  26. R. Tomaszek, L. Pawlowski, J. Zdanowski, J. Grimblot, and J. Laureyns, Microstructural Transformations of TiO2, Al2O3 + 13TiO2 and Al2O3 + 40TiO2 at Plasma Spraying and Laser Engraving, Surf. Coat. Technol., 2004, 185(2–3), p 137-149. https://doi.org/10.1016/j.surfcoat.2004.01.010

    Article  CAS  Google Scholar 

  27. P. Baghery, M. Farzam, A.B. Mousavi, and M. Hosseini, Ni-TiO2 Nanocomposite Coating with High Resistance to Corrosion and Wear, Surf. Coat. Technol., 2010, 204(23), p 3804-3810. https://doi.org/10.1016/j.surfcoat.2010.04.061

    Article  CAS  Google Scholar 

  28. J.J. Hao, Y.A. Bai, C.R. Wang, and X.Y. Liu, Fabrication and Characterization of Ni-TiO < Sub > 2</Sub > Nanocomposite Coatings and Their Corrosion Resistance Behaviors, Mater. Sci. Forum, 2011, 688, p 217-222. https://doi.org/10.4028/www.scientific.net/MSF.688.217

    Article  CAS  Google Scholar 

  29. S. Singh and M. Kaur, Mechanical and Microstructural Properties of NiCrFeSiBC/Cr3C2 Composite Coatings—Part I, Surf. Eng., 2014, 32, p 1-11

    Google Scholar 

  30. C.R.C. Lima and J.M. Guilemany, Adhesion Improvements of Thermal Barrier Coatings with HVOF Thermally Sprayed Bond Coats, Surf. Coat. Technol., 2007, 201(8), p 4694-4701

    Article  CAS  Google Scholar 

  31. G. Sundararajan and P.G. Shewmon, A New Model for the Erosion of Metals at Normal Incidence, Wear, 1983, 84(2), p 237-258. https://doi.org/10.1016/0043-1648(83)90266-1

    Article  Google Scholar 

Download references

Acknowledgment

The authors thankfully acknowledge all the essential research facilities required for the completion of this project provided by Indian Institute of Technology Ropar, India, and Indian Institute of Technology, Roorkee. The authors would like to express sincere thanks to IKG, Punjab Technical University, Punjab, India, for supporting this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manpreet Kaur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Kaur, M. & Bhandari, S. Development and Characterization of High-Velocity Flame Sprayed Ni/TiO2/Al2O3 Coatings on Hydro Turbine Steel. J Therm Spray Tech 28, 1379–1401 (2019). https://doi.org/10.1007/s11666-019-00918-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-019-00918-5

Keywords

Navigation