Skip to main content
Log in

A Method to Estimate the Optical Thickness of an Opaque Stream of Particles Based on Particle Rate, Size and Velocity Measurements as A Necessity to Enable Tomographic Analysis

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Diagnostic methods using a tomographic reconstruction allow for three-dimensional characterization of spraying processes. Since in many spraying applications, non-rotationally symmetric phenomena occur, the application of emission tomography methods seems most reasonable. Yet, to be able to apply this method the observed object has to be luminous and optically thin. Hence, to investigate a particle stream, the optical thickness of such a stream has to be estimated beforehand. Within this paper, a method to determine this parameter, based on particle rate, size and velocity measurements is presented and applied to a wire arc spray process, proving that it is possible to perform a tomographic investigation of a particle beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Baukal, Industrial Combustion Testing, 1st ed., CRC Press, Boca Raton, 2010

    Book  Google Scholar 

  2. P. Lehmann, In-Process Laser-Messmethoden auf der Grundlage der Fourieranalyse, expert-Verlag, Berlin, 2003

    Google Scholar 

  3. T. Streibl, T. Duda, K. Landes, Diagnostics of thermal spray processes by in-flight measurement of particle size and shape with innovative particle-shape-imaging (PSI) technique, in Proceedings of SPIE 4308, High-Speed Imaging and Sequence Analysis III, 2001

  4. M.-M. Matz and M. Aumiller, Practical comparison of cylindrical nozzle and de Laval nozzle for wire arc spraying, J. Therm. Spray Technol., 2014, 23(8), p 1470-1477

    Article  CAS  Google Scholar 

  5. E. Hämäläinen et al., in Imaging Diagnostics in Thermal Spraying-Spraywatch System, Thermal Spray: Surface Engineering via Applied Research, ed. by C.C. Berndt (ASM International, Montréal, Québec, Canada), 8–11 May 2000, p. 1383

  6. K. Landes, Diagnostics in plasma spraying techniques, Surf. Coat. Technol., 2006, 201(5), p 1948-1954

    Article  CAS  Google Scholar 

  7. J. Zierhut, K. D. Landes, W. Kroemmer, P. Heinrich, in Particle Flux Imaging (PFI) In Situ Diagnostics for Thermal Coating Process, Thermal Spray: Surface Engineering via Applied Research, ed. by C.C. Berndt (ASM International, Montréal, Québec, Canada), 8–11 May 2000, p. 1383

  8. J. Schein et al., Tomographic investigation of plasma jets produced by multielectrode plasma torches, J. Therm. Spray Technol., 2008, 17(3), p 338-343

    Article  CAS  Google Scholar 

  9. J. Hlína and J. Šonský, Time-resolved tomographic measurements of temperatures in a thermal plasma jet, J. Phys. D Appl. Phys., 2010, 43(5), p 55202

    Article  Google Scholar 

  10. A. Fridman, Plasma Chemistry, Cambridge University Press, Cambridge, 2008

    Book  Google Scholar 

  11. A. Fridman and L. Kennedy, Plasma Physics and Engineering, Taylor & Francis, Abingdon, 2004

    Book  Google Scholar 

  12. S. Ozcelik, K. Moore, and D. Naidu, Modeling sensing and control of gas metal arc welding, Elsevier, Amsterdam, 2003

    Google Scholar 

  13. F. Durst, A. Melling, and J.H. Whitelaw, Principles and practice of laser-Doppler anemometry, Academic Press, New York, 1976

    Google Scholar 

  14. C. Tropea, A. Yarin, and J. Foss, Springer Handbook of Experimental Fluid Mechanics, Springer, Berlin, 2007

    Book  Google Scholar 

  15. G. Mauer et al., Investigation and comparison of in-flight particle velocity during the plasma-spray process as measured by laser Doppler anemometry and DPV-2000, J. Therm. Spray Technol., 2013, 22(6), p 892-900

    Article  CAS  Google Scholar 

  16. M. Krauss et al., In-situ particle temperature, velocity and size measurements in the spray forming process, Mater. Sci. Eng. A, 2002, 326(1), p 154-164

    Article  Google Scholar 

  17. G. Mauer, R. Vaßen, and D. Stöver, Comparison and applications of DPV-2000 and accuraspray-g3 diagnostic systems, J. Therm. Spray Technol., 2007, 16(3), p 414-424

    Article  CAS  Google Scholar 

  18. C. Moreau et al., Diagnostics for advanced materials processing by plasma spraying, Pure Appl. Chem., 2005, 77(2), p 443-462

    Article  CAS  Google Scholar 

  19. Tecnar Automation Ltd, DPV Evolution: Product Manual, Edition 1, 2012

  20. S. Zimmermann, K. Landes, and J. Schein, Innovative particle characterization method for thermal spray processes, Materialwiss. Werkstofftech., 2008, 39(1), p 18-23

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Szulc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szulc, M., Kirner, S., Bredack, M. et al. A Method to Estimate the Optical Thickness of an Opaque Stream of Particles Based on Particle Rate, Size and Velocity Measurements as A Necessity to Enable Tomographic Analysis. J Therm Spray Tech 28, 1627–1635 (2019). https://doi.org/10.1007/s11666-019-00910-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-019-00910-z

Keywords

Navigation