Skip to main content

Advertisement

Log in

Influence of Powder Microstructure on the Microstructural Evolution of As-Sprayed and Heat Treated Cold-Sprayed Ti-6Al-4V Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Cold spray repair of high-value titanium alloy components has gained considerable interest; however, the influence of deposition conditions on the resulting microstructure and properties is not well established. This work examines the influence of feedstock powder type on the microstructural evolution of cold spray-deposited Ti-6Al-4V powders following deposition and after low-temperature heat treatment. Plasma-atomized, gas-atomized, and hydride de-hydride Ti-6Al-4V powders were deposited on Ti-6Al-4V substrates using cold spray technology and subsequently annealed at 550 °C for 5 h. Powders and cold spray depositions were characterized using x-ray diffraction, optical microscopy, scanning electron microscopy, and electron backscatter diffraction. Atomized and hydride de-hydride powders were characterized by a martensitic alpha and equiaxed alpha microstructure, respectively. Phase analysis revealed hydride de-hydride powders to contain beta phase regions near alpha grain boundaries; however, beta phase was not observed in atomized powders. Atomized coatings retained their powder microstructure in particle interiors but demonstrated ultra-fine grain formation near particle boundaries, likely due to dynamic recrystallization. In contrast, hydride de-hydride powders showed a larger increase in microstrain after deposition, without ultra-fine grain formation. Heat treatment resulted in recovery and recrystallization for all coatings and, in the case of atomized coatings, resulted in beta phase precipitation in regions that experienced large plastic strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Dutta and F.S. Froes, The Additive Manufacturing (AM) of Titanium Alloys, Met. Powder Rep., 2017, 7(2), p 96-106

    Article  Google Scholar 

  2. C. Widener, M. Carter, O. Ozdemir, R. Hrabe, B. Hoiland, T. Stamey, V. Champagne, and T. Eden, Application of High-Pressure Cold Spray for an Internal Bore Repair of a Navy Valve Actuator, J. Therm. Spray Technol., 2016, 25(1-2), p 193-201

    Article  CAS  Google Scholar 

  3. R. Jones, N. Matthews, C. Rodopoulos, K. Cairns, and S. Pitt, On the Use of Supersonic Particle Deposition to Restore the Structural Integrity of Damaged Aircraft Structures, Int. J. Fatigue, 2011, 33(9), p 1257-1267

    Article  CAS  Google Scholar 

  4. V. Champagne and D. Helfritch, Critical Assessment 11: Structural Repairs by Cold Spray, Mater. Sci. Technol., 2015, 31(6), p 627-634

    Article  CAS  Google Scholar 

  5. D. Goldbaum, R.R. Chromik, N. Brodusch, and R. Gauvin, Microstructure and Mechanical Properties of Ti Cold-Spray Splats Determined by Electron Channeling Contrast Imaging and Nanoindentation Mapping, Microsc. Microanal., 2015, 21(3), p 570-581

    Article  CAS  Google Scholar 

  6. D. Goldbaum, R.R. Chromik, S. Yue, E. Irissou, and J.-G. Legoux, Mechanical Property Mapping of Cold Sprayed Ti Splats and Coatings, J. Therm. Spray Technol., 2011, 20(3), p 486-496

    Article  CAS  Google Scholar 

  7. D. Goldbaum, J.M. Shockley, R.R. Chromik, A. Rezaeian, S. Yue, J.-G. Legoux, and E. Irissou, The Effect of Deposition Conditions on Adhesion Strength of Ti and Ti6Al4V Cold Spray Splats, J. Therm. Spray Technol., 2012, 21(2), p 288-303

    Article  CAS  Google Scholar 

  8. M.V. Vidaller, A. List, F. Gaertner, T. Klassen, S. Dosta, and J.M. Guilemany, Single Impact Bonding of Cold Sprayed Ti-6Al-4V Powders on Different Substrates, J. Therm. Spray Technol., 2015, 24(4), p 644-658

    Article  CAS  Google Scholar 

  9. W.Y. Li, C. Zhang, X. Guo, J. Xu, C.J. Li, H. Liao, C. Coddet, and K.A. Khor, Ti and Ti-6Al-4V Coatings by Cold Spraying and Microstructure Modification by Heat Treatment, Adv. Eng. Mater., 2007, 9(5), p 418-423

    Article  CAS  Google Scholar 

  10. P. Vo, E. Irissou, J.-G. Legoux, and S. Yue, Mechanical and Microstructural Characterization of Cold-Sprayed Ti-6Al-4V After Heat Treatment, J. Therm. Spray Technol., 2013, 22(6), p 954-964

    Article  CAS  Google Scholar 

  11. V.S. Bhattiprolu, K.W. Johnson, O.C. Ozdemir, and G.A. Crawford, Influence of Feedstock Powder and Cold Spray Processing Parameters on Microstructure and Mechanical Properties of Ti-6Al-4V Cold Spray Depositions, Surf. Coat. Technol., 2018, 335, p 1-12

    Article  CAS  Google Scholar 

  12. G. Bae, S. Kumar, S. Yoon, K. Kang, H. Na, H.-J. Kim, and C. Lee, Bonding Features and Associated Mechanisms in Kinetic Sprayed Titanium Coatings, Acta Mater., 2009, 57(19), p 5654-5666

    Article  CAS  Google Scholar 

  13. V.N.V. Munagala, V. Akinyi, P. Vo, and R.R. Chromik, Influence of Powder Morphology and Microstructure on the Cold Spray and Mechanical Properties of Ti6Al4V Coatings, J. Therm. Spray Technol., 2018, 27(5), p 827-842

    Article  CAS  Google Scholar 

  14. K. Binder, J. Gottschalk, M. Kollenda, F. Gärtner, and T. Klassen, Influence of Impact Angle and Gas Temperature on Mechanical Properties of Titanium Cold Spray Deposits, J. Therm. Spray Technol., 2011, 20(1-2), p 234-242

    Article  CAS  Google Scholar 

  15. S.H. Zahiri, W. Yang, and M. Jahedi, Characterization of Cold Spray Titanium Supersonic Jet, J. Therm. Spray Technol., 2009, 18(1), p 110-117

    Article  CAS  Google Scholar 

  16. N. Khun, A. Tan, W. Sun, and E. Liu, Effect of Heat Treatment Temperature on Microstructure and Mechanical and Tribological Properties of Cold Sprayed Ti-6Al-4V Coatings, Tribol. Trans., 2017, 60(6), p 1033-1042

    Article  CAS  Google Scholar 

  17. A. Birt, V. Champagne, R. Sisson, and D. Apelian, Microstructural Analysis of Cold-Sprayed Ti-6Al-4V at the Micro-and Nano-Scale, J. Therm. Spray Technol., 2015, 24(7), p 1277-1288

    Article  CAS  Google Scholar 

  18. A. Birt, V. Champagne, R. Sisson, and D. Apelian, Microstructural Analysis of Ti-6Al-4V Powder for Cold Gas Dynamic Spray Applications, Adv. Powder Technol., 2015, 26(5), p 1335-1347

    Article  CAS  Google Scholar 

  19. J.Y. Lek, A. Bhowmik, A.W.-Y. Tan, W. Sun, X. Song, W. Zhai, P.J. Buenconsejo, F. Li, E. Liu, and Y.M. Lam, Understanding the Microstructural Evolution of Cold Sprayed Ti-6Al-4V Coatings on Ti-6Al-4V Substrates, Appl. Surf. Sci., 2018, 459, p 492-504

    Article  CAS  Google Scholar 

  20. A.W.-Y. Tan, W. Sun, A. Bhowmik, J.Y. Lek, I. Marinescu, F. Li, N.W. Khun, Z. Dong, and E. Liu, Effect of Coating Thickness on Microstructure, Mechanical Properties and Fracture Behaviour of Cold-Sprayed Ti6Al4V Coatings on Ti6Al4V Substrates, Surf. Coat. Technol., 2018, 349, p 303-317

    Article  CAS  Google Scholar 

  21. B. Vrancken, L. Thijs, J.-P. Kruth, and J. Van Humbeeck, Heat Treatment of Ti6Al4V Produced by Selective Laser Melting: Microstructure and Mechanical Properties, J. Alloy. Compd., 2012, 541, p 177-185

    Article  CAS  Google Scholar 

  22. M. Smagorinski and P. Tsantrizos, Production of Spherical Titanium Powder by Plasma Atomization, Adv. Powder. Metall. Part. Mater., 2002, 3, p 3-248

    Google Scholar 

  23. C. McCracken, D. Barbis, and R. Deeter, Key Characteristics of Hydride–Dehydride Titanium Powder, Powder Metall., 2011, 54(3), p 180-183

    Article  CAS  Google Scholar 

  24. A. Heidloff, J. Rieken, I. Anderson, D. Byrd, J. Sears, M. Glynn, and R. Ward, Advanced Gas Atomization Processing for Ti and Ti Alloy Powder Manufacturing, JOM, 2010, 62(5), p 35-41

    Article  CAS  Google Scholar 

  25. Y. Kim, E.-P. Kim, Y.-B. Song, S.H. Lee, and Y.-S. Kwon, Microstructure and Mechanical Properties of Hot Isostatically Pressed Ti-6Al-4V Alloy, J. Alloy. Compd., 2014, 603, p 207-212

    Article  CAS  Google Scholar 

  26. D.L. Olson, ASM Handbook: Welding, Brazing, and Soldering, ASM International, Geauga County, 1993

    Book  Google Scholar 

  27. H. Chandler, Heat Treater’s Guide: Practices and Procedures for Nonferrous Alloys, ASM International, Geauga County, 1996

    Google Scholar 

  28. B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction, Pearson Education, London, 2014

    Google Scholar 

  29. A.K. Swarnakar, O. Van der Biest, and B. Baufeld, Thermal Expansion and Lattice Parameters of Shaped Metal Deposited Ti-6Al-4V, J. Alloy. Compd., 2011, 509(6), p 2723-2728

    Article  CAS  Google Scholar 

  30. D. Rafaja, T. Schucknecht, V. Klemm, A. Paul, and H. Berek, Microstructural Characterisation of Titanium Coatings Deposited Using Cold Gas Spraying on Al2O3 Substrates, Surf. Coat. Technol., 2009, 203(20), p 3206-3213

    Article  CAS  Google Scholar 

  31. A. Monshi, M.R. Foroughi, and M.R. Monshi, Modified Scherrer Equation to Estimate More Accurately Nano-crystallite Size Using XRD, World J. Nano Sci. Eng., 2012, 2(3), p 154-160

    Article  CAS  Google Scholar 

  32. B.D. Cullity and J.W. Weymouth, Elements of X-ray Diffraction, Am. J. Phys., 1957, 25(6), p 394-395

    Article  Google Scholar 

  33. T. Hussain, Cold Spraying of Titanium: A Review of Bonding Mechanisms, Microstructure and Properties, Key Engineering Materials, Trans Tech Publications, Zürich, 2013, p 53-90

    Google Scholar 

  34. C.K. Moy, J. Cairney, G. Ranzi, M. Jahedi, and S.P. Ringer, Investigating the Microstructure and Composition of Cold Gas-Dynamic Spray (CGDS) Ti Powder Deposited on Al 6063 Substrate, Surf. Coat. Technol., 2010, 204(23), p 3739-3749

    Article  CAS  Google Scholar 

  35. T. Ahmed and H. Rack, Phase Transformations During Cooling in α + β Titanium Alloys, Mater. Sci. Eng., A, 1998, 243(1), p 206-211

    Article  Google Scholar 

  36. D.C. Hurley, D. Balzar, P. Purtscher, and K. Hollman, Nonlinear Ultrasonic Parameter in Quenched Martensitic Steels, J. Appl. Phys., 1998, 83(9), p 4584-4588

    Article  CAS  Google Scholar 

  37. B.V. Vincente, D.R.N. Correa, T.A.G. Donato, V.E. Arana-Chavez, M.A.R. Buzalaf, and C.R. Grandini, The Influence of Small Quantities of Oxygen in the Structure, Microstructure, Hardness, Elasticity Modulus and Cytocompatibility of Ti-Zr Alloys for Dental Applications, Metals, 2014, 7(1), p 542-553

    Google Scholar 

  38. R. Montanari, G. Costanza, M. Tata, and C. Testani, Lattice Expansion of Ti-6Al-4V by Nitrogen and Oxygen Absorption, Mater. Charact., 2008, 59(3), p 334-337

    Article  CAS  Google Scholar 

  39. J.-M. Oh, B.-G. Lee, S.-W. Cho, S.-W. Lee, G.-S. Choi, and J.-W. Lim, Oxygen Effects on the Mechanical Properties and Lattice Strain of Ti and Ti-6Al-4V, Met. Mater. Int., 2011, 17(5), p 733-736

    Article  CAS  Google Scholar 

  40. G. Welsch, R. Boyer, and E. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, Geauga County, 1993

    Google Scholar 

  41. C. Lee and J. Kim, Microstructure of Kinetic Spray Coatings: A Review, J. Therm. Spray Technol., 2015, 24(4), p 592-610

    Article  CAS  Google Scholar 

  42. M. Rokni, S. Nutt, C. Widener, V. Champagne, and R. Hrabe, Review of Relationship Between Particle Deformation, Coating Microstructure, and Properties in High-Pressure Cold Spray, J. Therm. Spray Technol., 2017, 26(6), p 1308-1355

    Article  Google Scholar 

  43. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Amsterdam, 2012

    Google Scholar 

  44. M.J. Donachie, Titanium: A Technical Guide, ASM International, Geauga County, 2000

    Google Scholar 

  45. J.R. Davis and A.S.F. Metals, ASM Handbook 2. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, Geauga County, 1998

    Google Scholar 

  46. A.-M. Bandar, P. Vo, R. Mongrain, E. Irissou, and S. Yue, Effect of Heat Treatment on the Microstructure and Mechanical Properties of Stainless Steel 316L Coatings Produced by Cold Spray for Biomedical Applications, J. Therm. Spray Technol., 2014, 23(4), p 641-652

    Article  CAS  Google Scholar 

  47. M. Rokni, C. Widener, and G. Crawford, Microstructural Evolution of 7075 Al Gas Atomized Powder and High-Pressure Cold Sprayed Deposition, Surf. Coat. Technol., 2014, 251, p 254-263

    Article  CAS  Google Scholar 

  48. Y. Zou, W. Qin, E. Irissou, J.-G. Legoux, S. Yue, and J.A. Szpunar, Dynamic Recrystallization in the Particle/Particle Interfacial Region of Cold-Sprayed Nickel Coating: Electron Backscatter Diffraction Characterization, Scr. Mater., 2009, 61(9), p 899-902

    Article  CAS  Google Scholar 

  49. K. Kim, M. Watanabe, J. Kawakita, and S. Kuroda, Grain Refinement in a Single Titanium Powder Particle Impacted at High Velocity, Scr. Mater., 2008, 59(7), p 768-771

    Article  CAS  Google Scholar 

  50. R.E. Reed-Hill, R. Abbaschian, and R. Abbaschian, Physical Metallurgy Principles, Van Nostrand, New York, 1973

    Google Scholar 

  51. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-Dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater Sci., 2014, 60, p 130-207

    Article  CAS  Google Scholar 

  52. S. Mironov, Y. Zhang, Y. Sato, and H. Kokawa, Crystallography of Transformed β Microstructure in Friction Stir Welded Ti-6Al-4V Alloy, Scr. Mater., 2008, 59(5), p 511-514

    Article  CAS  Google Scholar 

  53. D. Banerjee and J. Williams, Perspectives on Titanium Science and Technology, Acta Mater., 2013, 61(3), p 844-879

    Article  CAS  Google Scholar 

  54. M. Simonelli, Microstructure Evolution and Mechanical Properties of Selective Laser Melted Ti-6Al-4V. Marco Simonelli, 2014

  55. H. Beladi, Q. Chao, and G.S. Rohrer, Variant Selection and Intervariant Crystallographic Planes Distribution in Martensite in a Ti-6Al-4V Alloy, Acta Mater., 2014, 80, p 478-489

    Article  CAS  Google Scholar 

  56. S.H. Zahiri, D. Fraser, and M. Jahedi, Recrystallization of Cold Spray-Fabricated CP Titanium Structures, J. Therm. Spray Technol., 2009, 18(1), p 16-22

    Article  CAS  Google Scholar 

  57. W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, and M. Qian, Additive Manufacturing of Strong and Ductile Ti-6Al-4V by Selective Laser Melting via in Situ Martensite Decomposition, Acta Mater., 2015, 85, p 74-84

    Article  CAS  Google Scholar 

  58. C.M. Kay and J. Karthikeyan, High Pressure Cold Spray: Principles and Applications, ASM International, Materials Park, 2016

    Google Scholar 

Download references

Acknowledgments

The authors are thankful for the financial support of U.S. Army Research, Development and Engineering Command under Contract No. WI5QKN-16-C-0094.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant A. Crawford.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattiprolu, V.S., Johnson, K.W. & Crawford, G.A. Influence of Powder Microstructure on the Microstructural Evolution of As-Sprayed and Heat Treated Cold-Sprayed Ti-6Al-4V Coatings. J Therm Spray Tech 28, 174–188 (2019). https://doi.org/10.1007/s11666-018-0812-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0812-1

Keywords

Navigation