Skip to main content
Log in

VLPPS: An Emerging Process to Create Well-Defined Components by Additive Manufacturing

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Plasma spraying in controlled atmosphere as very-low-pressure plasma spraying (VLPPS) allows to work with different states of matter, particularly vapor. As a result, the coating microstructure is unique (lower-scale elements, pore architecture) and the properties are improved. Another benefit of VLPPS process is the mold filling. Unlike other thermal spray processes, the vapor mode can follow the gas flow and reach the mold walls to fill. The vapor mode deposition is very soft and protects the surface state of the mold/substrate. The coating microstructure is homogeneous on all the geometry. The choice of a soluble salt mold permits to easily get back the coating and use it as a functional part. The objective is to demonstrate that VLPPS process can be used as an additive manufacturing device to create well-defined objects/pieces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Vardelle, C. Moreau, J. Akedo, H. Ashrafizadeh, C.C. Berndt, J. Oberste Berghaus, M. Boulos, J. Brogan, A.C. Bourtsalas, A. Dolatabadi, M. Dorfman, T.J. Eden, P. Fauchais, G. Fisher, F. Gaertner, M. Gindrat, R. Henne, M. Hyland, E. Irissou, E.H. Jordan, K.A. Khor, A. Killinger, Y.-C. Lau, C.-J. Li, L. Li, J. Longtin, N. Markocsan, P.J. Masset, J. Matejicek, G. Mauer, A. McDonald, J. Mostaghimi, S. Sampath, G. Schiller, K. Shinoda, M.F. Smith, A. Ansar Syed, N.J. Themelis, F.-L. Toma, J.P. Trelles, R. Vassen, and P. Vuoristo, The 2016 Thermal Spray Roadmap, J. Therm. Spray Technol., 2016, 25(8), p 1376-1440

    Article  Google Scholar 

  2. F.L. Toma, A. Potthoff, L.M. Berger, and C. Leyens, Demands, Potentials, and Economic Aspects of Thermal Spraying with Suspensions: A Critical Review, J. Therm. Spray Technol., 2015, 24(7), p 1143-1152

    Article  Google Scholar 

  3. G. Mauer, M.O. Jarligo, S. Rezanka, A. Hospach, and R. Vaßen, Novel Opportunities for Thermal Spray by PS-PVD, Surf. Coat. Technol., 2015, 268, p 52-57

    Article  Google Scholar 

  4. S. Rezanka, G. Mauer, and R. Vaßen, Improved Thermal Cycling Durability of Thermal Barrier Coatings Manufactured by PS-PVD, J. Therm. Spray Technol., 2014, 23(1-2), p 182-189

    Article  Google Scholar 

  5. M. Gindrat, J.-L. Dorier, C. Hollenstein, A. Refke, and G. Barbezat, Characterization of Supersonic Low Pressure Plasma Jets with Electrostatic Probes, Plasma Sources Sci. Technol., 2004, 13(3), p 484-500

    Article  Google Scholar 

  6. J.-L. Dorier, M. Gindrat, C. Hollenstein, M. Refke, A. Salito, and G. Barbezat, Plasma Jet Properties in a New Spraying Process at Low Pressure for Large Area Thin Film Deposition, Thermal Spray 2001: New Surfaces for A New Millennium, C.C. Berndt, K.A. Khor and E.F. Lugscheider, Ed., May 28-30, 2001 (Singapore, Singapore), ASM International, 2001

  7. K. von Niessen, M. Gindrat, and A. Refke, Vapor Phase Deposition Using Plasma Spray-PVD, J. Therm. Spray Technol., 2010, 19(1-2), p 502-509

    Article  Google Scholar 

  8. A. Barth, M. Gindrat, and S. Usai, High Productivity PS-PVD Process, Thermal Spray 2013: Innovative Coating Solutions for the Global Economy, R.S. Lima, A. Agarwal, M.M. Hyland, Y.-C. Lau, G. Mauer, A. McDonald, F.-L. Toma, Ed., May 13-15, 2013 (Busan, South Korea), ASM International, 2013

  9. P. Fauchais, J.V.R. Heberlein, and M. Boulos, Thermal Spray Fundamentals: From Powder to Part, Springer, NewYork, 2014, p 24

    Book  Google Scholar 

  10. F.W. Baumann and D. Roller, Additive Manufacturing, Cloud-Based 3D Printing and Associated Services—Overview, J. Manuf. Mater. Process, 2017, 15(1), p 1-15

    Google Scholar 

  11. W.E. Frazier, Metal Additive Manufacturing, Rev. J. Mater. Eng. Perform., 2014, 23(6), p 1917-1928

    Article  Google Scholar 

  12. I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing Technologies, Springer, New York, 2015

    Book  Google Scholar 

  13. E.O. Olakanmi, R.F. Cochrane, and K.W. Dalgarno, A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties, Prog. Mater. Sci., 2015, 74, p 401-477

    Article  Google Scholar 

  14. R.N. Raoelison, C. Verdy, and H. Liao, Cold Gas Dynamic Spray Additive Manufacturing Today: Deposit Possibilities, Technological Solutions and Viable Applications, Mater. Des., 2017, 133, p 266-287

    Article  Google Scholar 

  15. A. Astarita, F. Coticelli, and U. Prisco, Repairing of an Engine Block Through the Cold Gas Dynamic Spray Technology, Mater. Res., 2016, 19(6), p 1226-1231

    Article  Google Scholar 

  16. A. Villafuerte, Modern Cold Spray: Materials, Process and Applications, Springer, New York, 2015, p 341-358

    Book  Google Scholar 

  17. E. Bannier, G. Darut, E. Sánchez, A. Denoirjean, M.C. Bordes, M.D. Salvador, E. Rayón, and H. Ageorges, Microstructure and Photocatalytic Activity of Suspension Plasma Sprayed TiO2 Coatings on Steel and Glass Substrates, Surf. Coat. Technol., 2011, 206(2-3), p 378-386

    Article  Google Scholar 

  18. S. Guanhong, H. Xiaodong, J. Jiuxing, and S. Yue, Parametric Study of Al and Al2O3 Ceramic Coatings Deposited by Air Plasma Spray onto Polymer Substrate, Appl. Surf. Sci., 2011, 257(17), p 7864-7870

    Article  Google Scholar 

  19. K.J. Klabunde, Thin Films From Free Atoms and Particles, Academic Press Inc, Orlando, 2012, p 8

    Google Scholar 

  20. G. Reisel and R.B. Heimann, Correlation Between Surface Roughness of Plasma-Sprayed Chromium Oxide Coatings and Powder Grain Size Distribution: A Fractal Approach, Surf. Coat. Technol., 2004, 185(2-3), p 215-221

    Article  Google Scholar 

  21. Y. Wang, G. Darut, T. Poirier, J. Stella, H. Liao, and MP. Planche, Ultrasonic Cavitation Erosion of Vacuum Plasma sprayed Yttria Stabilized Zirconia Coatings, 8th RIPT2017, December 6-8, 2017 (Limoges, France)

  22. J. Ilavsky, A.J. Allen, G.G. Long, S. Krueger, C.C. Berndt, and H. Herman, Influence of Spray Angle on the Pore and Crack Microstructure of Plasma-Sprayed Deposits, J. Am. Ceram. Soc., 1997, 80(3), p 733-742

    Article  Google Scholar 

  23. S.H. Leigh and C.C. Berndt, Evaluation of Off-Angle Thermal Spray, Surf. Coat. Technol., 1997, 89(3), p 213-224

    Article  Google Scholar 

  24. P. Fauchais, A. Vardelle, M. Vardelle, and M. Fukumoto, Knowledge Concerning Splat Formation: An Invited Review, J. Therm. Spray Technol., 2004, 13(3), p 337-360

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Creaholic Company which supported the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Darut.

Additional information

This article is an invited paper selected from presentations at the 2018 International Thermal Spray Conference, held May 7-10, 2018, in Orlando, Florida, USA, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darut, G., Niederhauser, A., Jaccoud, B. et al. VLPPS: An Emerging Process to Create Well-Defined Components by Additive Manufacturing. J Therm Spray Tech 28, 255–264 (2019). https://doi.org/10.1007/s11666-018-0792-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0792-1

Keywords

Navigation