Skip to main content
Log in

Fatigue Crack Growth in Plasma-Sprayed Refractory Materials

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Fatigue crack growth in self-standing plasma-sprayed tungsten and molybdenum beams with artificially introduced notches subjected to pure bending was studied. Fatigue crack length was measured using the differential compliance method, and fatigue crack growth rate was established as a function of stress intensity factor. Crack opening under compressive stress was detected. Fractographic analysis revealed the respective crack formation mechanisms. At low crack propagation rates, the fatigue crack growth takes place by intergranular splat fracture accompanied by splat decohesion in Mo coating, eventually by void interconnection in W coating. Frequently, the crack deflected from the notch plane being attracted to stress concentrators formed by voids or favorably oriented splat interfaces. At higher values of the stress intensity factor, the intergranular cracking of splats becomes more common and the crack propagated more perpendicularly to the specimen surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.G. La Barbera-Sosa, Y.Y. Santana, C. Villalobos-Gutiérrez, S. Cabello-Sequera, M.H. Staia, and E.S. Puchi-Cabrera, Effect of Spray Distance on the Corrosion-Fatigue Behavior of a Medium-Carbon Steel Coated with a Colmonoy 88 Alloy Deposited by HVOF Thermal Spray, Surf. Coat. Technol., 2010, 205(4), p 1137-1144. https://doi.org/10.1016/j.surfcoat.2010.01.038

    Article  Google Scholar 

  2. A. Vackel and S. Sampath, Fatigue Behavior of Thermal Sprayed WC-CoCr-Steel Systems: Role of Process and Deposition Parameters, Surf. Coat. Technol., 2017, 315, p 408-416. https://doi.org/10.1016/j.surfcoat.2017.02.062

    Article  Google Scholar 

  3. O. Kovářík, J. Siegl, J. Nohava, and P. Chráska, Young’s Modulus and Fatigue Behavior of Plasma-Sprayed Alumina Coatings, J. Therm. Spray Technol., 2005, 14(2), p 231-238. https://doi.org/10.1361/105996304523809

    Article  Google Scholar 

  4. O. Kovářík, J. Siegl, and Z. Procházka, Fatigue Behavior of Bodies with Thermally Sprayed Metallic and Ceramic Deposits, J. Therm. Spray Technol., 2008, 17(4), p 525-532. https://doi.org/10.1007/s11666-008-9205-1

    Article  Google Scholar 

  5. R. Musalek, O. Kovarik, L. Tomek, J. Medricky, Z. Pala, P. Hausild, J. Capek, K. Kolarik, N. Curry, and S. Bjorklund, Fatigue Performance of TBCs on Hastelloy X Substrate During Cyclic Bending, J. Therm. Spray Technol., 2016, 25(1-2), p 231-243. https://doi.org/10.1007/s11666-015-0321-4

    Article  Google Scholar 

  6. J. Cizek, O. Kovarik, J. Siegl, K.A. Khor, and I. Dlouhy, Influence of Plasma and Cold Spray Deposited Ti Layers on High-Cycle Fatigue Properties of Ti6Al4V Substrates, Surf. Coat. Technol., 2013, 217, p 23-33. https://doi.org/10.1016/j.surfcoat.2012.11.067

    Article  Google Scholar 

  7. O. Kovářík, P. Haušild, J. Medřický, L. Tomek, J. Siegl, R. Mušálek, N. Curry, and S. Björklund, Fatigue Crack Growth in Bodies with Thermally Sprayed Coating, J. Therm. Spray Technol., 2016, 25(1-2), p 311-320. https://doi.org/10.1007/s11666-015-0329-9

    Article  Google Scholar 

  8. O. Kovářík, P. Haušild, J. Siegl, Z. Pala, J. Matějíček, and V. Davydov, The Influence of Plasma Sprayed Multilayers of Cr2O3 and Ni10wt%Al on Fatigue Resistance, Surf. Coat. Technol., 2014, 251, p 143-150. https://doi.org/10.1016/j.surfcoat.2014.04.018

    Article  Google Scholar 

  9. F. Kroupa and J. Plesek, Nonlinear Elastic Behavior in Compression of Thermally Sprayed Materials, Mater. Sci. Eng. A, 2002, 328(1-2), p 1-7. https://doi.org/10.1016/S0921-5093(01)01653-7

    Article  Google Scholar 

  10. R. Musalek, J. Matejicek, M. Vilemova, and O. Kovarik, Non-Linear Mechanical Behavior of Plasma Sprayed Alumina Under Mechanical and Thermal Loading, J. Therm. Spray Technol., 2010, 19(1-2), p 422-428. https://doi.org/10.1007/s11666-009-9362-x

    Article  Google Scholar 

  11. P. Cavaliere, A. Silvello, N. Cinca, H. Canales, S. Dosta, I. Garcia Cano, and J.M. Guilemany, Microstructural and Fatigue Behavior of Cold Sprayed Ni-Based Superalloys Coatings, Surf. Coat. Technol., 2017, 324, p 390-402. https://doi.org/10.1016/j.surfcoat.2017.06.006

    Article  Google Scholar 

  12. P. Cavaliere, A. Perrone, and A. Silvello, Fatigue Behaviour of Inconel 625 Cold Spray Coatings, Surf. Eng., 2018, 34(5), p 380-391. https://doi.org/10.1080/02670844.2017.1371872

    Article  Google Scholar 

  13. O. Kovářík, P. Haušild, J. Čapek, J. Medřický, J. Siegl, R. Mušálek, Z. Pala, N. Curry, and S. Björklund, Resonance Bending Fatigue Testing with Simultaneous Damping Measurement and Its Application on Layered Coatings, Int. J. Fatigue, 2016, 82, p 300-309. https://doi.org/10.1016/j.ijfatigue.2015.07.026

    Article  Google Scholar 

  14. C. Benz, Fatigue Crack Growth at Negative Stress Ratios: On the Uncertainty of Using Δ K and R to Define the Cyclic Crack Tip Load, Eng. Fract. Mech., 2018, 189, p 194-203. https://doi.org/10.1016/j.engfracmech.2017.11.001

    Article  Google Scholar 

  15. J. Zhang, X.D. He, B. Suo, and S.Y. Du, Elastic–plastic Finite Element Analysis of the Effect of Compressive Loading on Crack Tip Parameters and Its Impact on Fatigue Crack Propagation Rate, Eng. Fract. Mech., 2008, 75(18), p 5217-5228. https://doi.org/10.1016/j.engfracmech.2008.08.006

    Article  Google Scholar 

  16. M. Yu, T. Topper, D. Duquesnay, and M. Levin, The Effect of Compressive Peak Stress on Fatigue Behaviour, Int. J. Fatigue, 1986, 8(1), p 9-15. https://doi.org/10.1016/0142-1123(86)90041-1

    Article  Google Scholar 

  17. C. Benz and M. Sander, Reconsiderations of Fatigue Crack Growth at Negative Stress Ratios: Finite Element Analyses, Eng. Fract. Mech., 2015, 145, p 98-114. https://doi.org/10.1016/j.engfracmech.2015.07.022

    Article  Google Scholar 

  18. T.G. Chondros, A.D. Dimarogonas, and J. Yao, A Continuous Cracked Beam Vibration Theory, J. Sound Vib., 1998, 215(1), p 17-34. https://doi.org/10.1006/jsvi.1998.1640

    Article  Google Scholar 

  19. V.P. Golub, V.P. Butseroga, and A.D. Pogrebnyak, Study of the Kinetics of Fatigue Cracks by the Method of Differential Compliance, Int. Appl. Mech., 1995, 31(12), p 1018-1025. https://doi.org/10.1007/BF00847262

    Article  Google Scholar 

  20. O. Kovarik, A. Janca, and J. Siegl, Fatigue Crack Growth Rate in Miniature Specimens Using Resonance, Int. J. Fatigue, 2017, 102, p 252-260. https://doi.org/10.1016/j.ijfatigue.2017.02.015

    Article  Google Scholar 

  21. O. Kovářík, P. Haušild, J. Siegl, T. Chráska, J. Matějíček, Z. Pala, and M. Boulos, The Influence of Substrate Temperature on Properties of APS and VPS W Coatings, Surf. Coat. Technol., 2015, 268, p 7-14. https://doi.org/10.1016/j.surfcoat.2014.07.041

    Article  Google Scholar 

  22. K. Geels, “Metallographic and Materialographic Specimen Preparation, Light Microscopy, Image Analysis and Hardness Testing,” (West Conshohocken, PA), ASTM International, 2007, https://doi.org/10.1520/mnl46-eb

  23. M. Tenenbaum and H. Pollard, Ordinary Differential Equations: An Elementary Textbook for Students of Mathematics, Engineering, and the Sciences, Dover Publications, New York, 1985

    Google Scholar 

  24. J. Cizek, T. Chraska, O. Kovarik, J. Siegl, and J. Kondas, “Fatigue Crack Propagation in Cold Sprayed Metallic Coatings,” ITSC 2018—Proceedings of the International Thermal Spray Conference, F. Azarmi, K. Balani, T. Eden, T. Hussain, Y.-C. Lau, H. Li, K. Shinoda, F.-L. Toma, and J. Veilleux, Eds., (Orlando, FL, USA), ASM International, 2018

Download references

Acknowledgments

This study was supported by the Czech Science Foundation Grant Project GAČR 14-36566G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Kovarik.

Additional information

This article is an invited paper selected from presentations at the 2018 International Thermal Spray Conference, held May 7-10, 2018, in Orlando, Florida, USA, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovarik, O., Materna, A., Siegl, J. et al. Fatigue Crack Growth in Plasma-Sprayed Refractory Materials. J Therm Spray Tech 28, 87–97 (2019). https://doi.org/10.1007/s11666-018-0790-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0790-3

Keywords

Navigation