Skip to main content

Advertisement

Log in

Plasma-Sprayed Hydroxyapatite Coating for Improved Corrosion Resistance and Bioactivity of Magnesium Alloy

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In the present study, the corrosion resistance and bioactivity of AZ91HP magnesium alloy were improved by plasma spraying hydroxyapatite (HA) coating. X-ray diffraction measurements indicated that the coating formed amorphous and little β-Ca3 (PO4)2 besides of HA. The corrosion resistance and bioactivity of the coating and magnesium alloy in simulated body fluid were investigated using immersion test. The coating showed lower corrosion rate and better bioactivity than magnesium alloy. The coating significantly improved the hydrophilicity of Mg alloy. The prothrombin time of the coating was 18 s, and the prothrombin time of Mg alloy was 11 s, so the coating had better anticoagulant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Yazicia, A.E. Gulec, M. Gurbuz, Y. Gencer, and M. Tarakci, Biodegradability and Antibacterial Properties of MAO Coatings Formed on Mg-Sr-Ca Alloys in an Electrolyte Containing Ag Doped Hydroxyapatite, Thin Solid Films, 2017, 644, p 92-98

    Article  Google Scholar 

  2. D.-J. Lin, F.-Y. Hung, M.-L. Ye, H.-P. Lee, and T.-S. Lui, Development of a Novel Micro-textured Surface Using Duplex Surface Modification for Biomedical Mg Alloy Applications, Mater. Lett., 2017, 206, p 9-12

    Article  CAS  Google Scholar 

  3. S.T. Jiang, J. Zhan, S.Z. Shun, and M.F. Chen, The Formation of FHA Coating on Biodegradable Mg-Zn-Zr Alloy Using a Two-step Chemical Treatment Method, Appl. Surf. Sci., 2016, 388, p 424-430

    Article  CAS  Google Scholar 

  4. Y. Feng, S. Zhu, L. Wang, L. Chang, B. Yan, X. Song, and S. Guan, Characterization and Corrosion Property of Nano-rod-like HA on Fluoride Coating Supported on Mg-Zn-Ca Alloy, Bioact. Mater., 2017, 2(2), p 63-70

    Article  Google Scholar 

  5. Y. Yun, Z.Y. Dong, D.E. Yang, M.J. Schulz, V.N. Shanov, S. Yarmolenko, Z.G. Xu, P. Kumta, and C. Sfeir, Biodegradable Mg Corrosion and Osteoblast Cell Culture Studies, Mater. Sci. Eng. C, 2009, 29(6), p 1814-1821

    Article  CAS  Google Scholar 

  6. F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, and H. Windhagen, In Vivo Corrosion of Four Magnesium Alloys and the Associated Bone Response, Biomaterials, 2005, 26(17), p 3557-3563

    Article  CAS  Google Scholar 

  7. M. Bornapour, M. Celikin, M. Cerruti, and M. Pekguleryuz, Magnesium Implant Alloy with Low Levels of Strontium and Calcium: the Third Element Effect and Phase Selection Improve Bio-corrosion Resistance and Mechanical Performance, Mater. Sci. Eng. C, 2014, 35, p 267-282

    Article  CAS  Google Scholar 

  8. R. Maurya, A.R. Siddiqui, and K. Balani, In Vitro Degradation and Biomineralization Ability of Hydroxyapatite Coated Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn Alloys, Surf. Coat. Technol., 2017, 325, p 65-74

    Article  CAS  Google Scholar 

  9. J. Park, H.-S. Han, J. Park, H. Seo, J. Edwards, Y.-C. Kim, M.-R. Ok, H.-K. Seok, and H. Feon, Corrosion Behavior of Biodegradable Mg-based Alloys via Femtosecond Laser Surface Melting, Appl. Surf. Sci., 2018, 448, p 424-434

    Article  CAS  Google Scholar 

  10. R.M. Kumar, K.K. Kuntal, S. Singh, P. Gupta, B. Bhushan, P. Gopinath, and D. Lahiri, Electrophoretic Deposition of Hydroxyapatite Coating on Mg-3Zn Alloy for Orthopaedic Application, Surf. Coat. Technol., 2016, 287, p 82-92

    Article  Google Scholar 

  11. A. Abdal-hay, N.A.M. Barakat, and J.K. Lim, Hydroxyapatite-doped Poly (lactic acid) Porous Film Coating for Enhanced Bioactivity and Corrosion Behavior of AZ31 Mg Alloy for Orthopedic Applications, Ceramics International, 2013, 39(1), p 183-195

    Article  CAS  Google Scholar 

  12. Q. Murtaza, J. Stokes, and M. Ardhaoui, Experimental Analysis of Spray Dryer used in Hydroxyapatite Thermal Spray Powder, J. Therm. spray Technol., 2012, 21(5), p 963-974

    Article  CAS  Google Scholar 

  13. R.A. Surmenev, M.A. Surmeneva, and A.A. Ivanova, Significance of Calcium Phosphate Coatings for the Enhancement of New Bone Osteogenesis—A Review, Acta Biomaterialia, 2014, 10, p 557-579

    Article  CAS  Google Scholar 

  14. A. Pragatheeswaran, P.V. Ananthapadmanabhan, Y. Chakravarthy, V. Chaturvedi, S. Bhandari, and K. Ramachandran, Plasma Spray Deposition of Lanthanum Phosphate and Phase structure of the Resultant Coating, J. Therm. spray Technol., 2015, 24(8), p 1377-1384

    Article  CAS  Google Scholar 

  15. R.S. Pillai, M. Frasnelli, and V.M. Sglavo, HA/β-TCP Plasma Sprayed Coatings on Ti Substrate for Biomedical Applications, Ceramics International, 2018, 44(2), p 1328-1333

    Article  CAS  Google Scholar 

  16. G. Singh, H. Singh, and B.S. Sidhu, Characterization and Corrosion Resistance of Plasma Sprayed HA and HA-SiO2 Coatings on Ti-6Al-4V, Surf. Coat. Technol., 2013, 228, p 242-247

    Article  CAS  Google Scholar 

  17. M.R. Mansura, J. Wang, and C.C. Berndt, Microstructure, Composition and Hardness of Laser-assisted Hydroxyapatite and Ti-6Al-4V Composite Coatings, Surf. Coat. Technol., 2013, 232, p 482-488

    Article  Google Scholar 

  18. H. Khandelwal, G. Singh, K. Agrawal, S. Prakash, and R.D. Agarwal, Characterization of Hydroxyapatite Coating by Pulse Laser Deposition Technique on Stainless Steel 316L by Varying Laser Energy, Appl. Surf. Sci., 2013, 265, p 30-35

    Article  CAS  Google Scholar 

  19. R. Kumari and J.D. Majumdar, Studies on Corrosion Resistance and Bio-activity of Plasma Spray Deposited Hydroxylapatite (HA) Based TiO2 and ZrO2 Dispersed Composite Coatings on Titanium Alloy (Ti-6Al-4 V) and the same after Post Spray Heat Treatment, Appl. Surf. Sci., 2017, 420, p 935-943

    Article  CAS  Google Scholar 

  20. Y. Otsuka, H. Kawaguchi, and Y. Mutoh, Cyclic Delamination Behavior of Plasma–sprayed Hydroxyapatite Coating on Ti-6Al-4V Substrates in Simulated Body Fluid, Materi. Sci. Eng. C, 2016, 67, p 533-541

    Article  CAS  Google Scholar 

  21. Y. Wang, T. Fan, and Z. Zhou, Hydroxyapatite Coating with Strong (002) Crystallographic Texture Deposited by Micro–plasma Spraying, Mater. Lett., 2016, 185, p 484-487

    Article  CAS  Google Scholar 

  22. M.S. Sadjadi, H.R. Ebrahimi, M. Meskinfam, and K. Zare, Silica Enhanced Formation of Hydroxyapatite Nanocrystals in Simulated Body Fluid (SBF) at 37°C, Mater. Chem. Phys., 2011, 130(1–2), p 67-71

    Article  CAS  Google Scholar 

  23. H. Tanigawa, H. Asoh, T. Ohno, M. Kubota, and S. Ono, Electrochemical Corrosion and Bioactivity of Titanium-hydroxyapatite Composites Prepared by Spark plasma Sintering, Corrosion Science, 2013, 70, p 212-220

    Article  Google Scholar 

  24. A. Mochizuki and H. Kaneda, Study on the Blood Compatibility and Biodegradation Properties of Magnesium Alloys, Mater. Sci. Eng. C, 2015, 47, p 204-210

    Article  CAS  Google Scholar 

  25. S. Zhu, N. Huang, H. Shu, Y. Wu, and L. Xu, Corrosion Resistance and Blood Compatibility of Lanthanum Ion Implanted Pure Iron by MEVVA, Appl. Surf. Sci., 2009, 256, p 99-104

    Article  CAS  Google Scholar 

  26. P.S. Prevey, X-ray Diffraction Characterization of Crystallinity and Phase Composition in Plasma-sprayed Hydroxyapatite Coatings, J. Therm. spray Technol., 2000, 9(3), p 369-376

    Article  CAS  Google Scholar 

  27. T. Hanas, T.S.S. Kumar, G. Perumal, M. Doble, and S. Ramakrishna, Electrospun PCL/HA Coating Friction Stir Processed AZ31/HA Composites for Degradable Implant Applications, J. Mater. Proce. Techno., 2018, 252, p 384-406

    Google Scholar 

  28. L. Jiang, L. Jiang, C. Xong, and S. Su, Improving the Degradation Behavior and In vitro Property of Nano-hydroxyapatite Surface-grafted with the Assist of Citric Acid, Colloids and surface B: Bioninterfaces, 2016, 146, p 234-328

    Article  Google Scholar 

  29. R.B. Heimann, Plasma-sprayed Hydroxyapatite-based Coatings: Chemical, Mechanical, Microstructural and Biomedical Properties, J. Therm. spray Technol., 2016, 25, p 827-850

    Article  CAS  Google Scholar 

  30. R. Palanivelu, S. Kalaniathan, and A.R. Kumar, Characterication Studies on Plasma Sprayed (AT/HA) Bi-layered Nanoceramics Coating on Biomedical Commercially Pure Titanium Dental Implant, Ceramics Internation, 2014, 40, p 7745-7751

    Article  CAS  Google Scholar 

  31. Y. Gao, C. Wang, M. Yao, and H. Liu, Corrosion Behavior of Laser Melted AZ91HP Magnesium Alloy, Mater. Corro., 2007, 58(6), p 463-466

    Article  CAS  Google Scholar 

  32. G. Yali, D. Xiong, W. Cunshan, and C. Yongzhe, Influences of Laser Powers on Microstructure and Properties of the Coatings on the AZ91HP Magnesium Alloy, Acta Metall. Sin., 2009, 22(3), p 167-173

    Article  Google Scholar 

  33. W. Fan, Fabrication of Hydroxyapatite Coating on the Surface of AZ31 Magnesium Alloy by Sol-gel Technique and Research of the Property, Master Paper of Taiyuan University of Technology, China, Taiyuan, 2015, p 26

    Google Scholar 

Download references

Acknowledgments

This research was supported by the funding from the National Natural Science Foundation of China (NSFC. No 51704073), Jilin Province Department of Education “Thirteen Five” science and technology research project of China (No. JJKH20180427KJ), and Science and Technology Development of Jilin Province (No. 20180520065). Jilin City Science and Technology Bureau Outstanding Young Talents Training Project (No. 201831785).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Li Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y.L., Liu, Y. & Song, X.Y. Plasma-Sprayed Hydroxyapatite Coating for Improved Corrosion Resistance and Bioactivity of Magnesium Alloy. J Therm Spray Tech 27, 1381–1387 (2018). https://doi.org/10.1007/s11666-018-0760-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0760-9

Keywords

Navigation