Skip to main content

Advertisement

Log in

Influence of Particle Size Distribution on the Morphology and Cavitation Resistance of High-Velocity Oxygen Fuel Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The cavitation wear process is one of the major wear mechanisms in turbines and rotors of hydroelectric power plants in Brazil. An effective way to increase the cavitation resistance is the use of coatings, applied by thermal spraying. The high-velocity oxy-fuel process (HVOF) is one of the most used thermal spraying processes, and it is widely adopted for applying coatings for protection against wear and in maintenance components. A FeCrMnSiB experimental alloy was deposited onto SAE 1020 substrate by HVOF process, in order to evaluate the influence of the powder particle size range on the morphology and cavitation resistance of the coatings. The morphology of the coatings showed an increase in oxide content with powder size reduction. The increase in the powder particle size reduced the wettability of the particles, observed by the increase in the quantity of non-melted particles. Higher particle size distribution led to an increase in erosion rate, due to higher presence of non-melted particles in the coatings and consequently reduction of splats adhesion. The cavitation damage was perceived mainly by the mechanism of lamellae detachment; however, part of the damage was also absorbed by strain hardening due to the γ-ε martensitic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C.M. Hansson and L.H. Hansson, Cavitation Erosion, ASM Handbook, 1992, 18, p 214-220

    Google Scholar 

  2. P.V. Marques and C.R.C. Lima, Studies of Cavitation Resistant Thermal Sprayed and Welded Coatings, in Thermal Spray 2003: Advancing the Science and Applying the Technology, 2003, 1, p 389-393

  3. J.H. Kim and M.H. Lee, A Study on Cavitation Erosion and Corrosion Behavior of Al-, Zn-, Cu-, and Fe-Based Coatings Prepared by Arc Spraying, J. Therm. Spray Technol., 2010, 19, p 1224-1230

    Article  Google Scholar 

  4. W. Yuping, L. Pinghua, C. Chenglin, W. Zehua, C. Ming, and H. Junhua, Cavitation Erosion Characteristics of a Fe-Cr-Si-B-Mn Coating Fabricated by HVOF Thermal Spray, Mater. Lett., 2007, 61, p 1867-1872

    Article  Google Scholar 

  5. L.A. Espitia and A. Toro, Cavitation Resistance, Microstructure and Surface Topography of Materials Used for Hydraulic Components, Tribol. Int., 2010, 43, p 2037-2045

    Article  Google Scholar 

  6. J.P. Tullis and B.P. Tullis, Hydraulics of PIPE Systems, in The CRC handbook of mechanical engineering, 2005

  7. X. Escaler, E. Egusquiza, M. Farhat, F. Avellan, and M. Coussirat, Detection of Cavitation in Hydraulic Turbines, Mech. Syst. Signal Process., 2006, 20, p 983-1007

    Article  Google Scholar 

  8. R.L.P. Simoneau, Cavitation Erosion and Deformation Mechanism of Ni and Co Austenitic Stainless Steel, in Proceedings of 7th Conference on Erosion by Liquid and Solid Impact, 1987

  9. Z. Wang and J. Zhu, Effect of Phase Transformation on Cavitation Erosion Resistance of Some Ferrous Alloys, Mater. Sci. Eng. A, 2003, 358(1-2), p 273-278

    Article  Google Scholar 

  10. S. Martin, C. Ullrich, D. Simek, U. Martin, and D. Rafaja, Stacking Fault Model of ε-Martensite and Its DIFFaX Implementation, J. Appl. Crystallogr., 2011, 44(4), p 779-787

    Article  Google Scholar 

  11. F. Lecroisey and A. Pineau, Martensitic Transformations Induced by Plastic Deformation in the Fe-Ni-Cr-C System, Metall. Mater. Trans., 1972, 3, p 391-400

    Article  Google Scholar 

  12. W.S. Lee and C.F. Lin, Impact Properties and Microstructure Evolution of 304L Stainless Steel, Mater. Sci. Eng. A, 2001, 308(1-2), p 124-135

    Article  Google Scholar 

  13. S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, and N. Guelton, Correlations Between the Calculated Stacking Fault Energy and the Plasticity Mechanisms in Fe-Mn-C alloys, Mater. Sci. Eng. A, 2004, 387-389, p 158-162

    Article  Google Scholar 

  14. D.A. Woodford, Cavitation-Erosion-Induced Phase Transformations in Alloys, Metall. Mater. Trans., 1972, 3(5), p 1137-1145

    Article  Google Scholar 

  15. M. Park, K. Kim, G. Shin, J. Yun, M. Shin, and S. Kim, Effects of Ni and Mn on the Cavitation Erosion Resistance of Fe-Cr-C-Ni/Mn Austenitic Alloys, Tribol. Lett., 2013, 52(3), p 477-484

    Article  Google Scholar 

  16. J.Y. Yun, G.S. Shin, M.C. Park, H.S. Lee and W.S. Kang, Effect of Strain-Induced ε and α′-Martensitic Transformation on Cavitation Erosion Resistance in Austenitic Fe-Cr-C-MnFe-Cr-C-Mnti Alloys, Wear, 2015, 338-339, p 379-384

    Article  Google Scholar 

  17. F.T. Cheng, K.H. Lo, and H.C. Man, NiTi Cladding on Stainless Steel by TIG Surfacing Process Part I. Cavitation Erosion Behavior, Surf. Coat. Technol., 2003, 172, p 308-315

    Article  Google Scholar 

  18. K. Jafarzadeh, Z. Valefi, and B. Ghavidel, The Effect of Plasma Spray Parameters on the Cavitation Erosion of Al2O3-TiO2 coatings, Surf. Coat. Technol., 2010, 205, p 1850-1855

    Article  Google Scholar 

  19. R.K. Kumar, M. Kamaraj, S. Seetharamu, T. Pramod, and P. Sampathkumaran, Effect of Spray Particle Velocity on Cavitation Erosion Resistance Characteristics of HVOF and HVAF Processed 86WC-10Co4Cr Hydro Turbine Coatings, J. Therm. Spray Technol., 2016, 25(6), p 1217-1230

    Article  Google Scholar 

  20. Z. Wang, X. Zhang, J. Cheng, J. Lin, and Z. Zhou, Cavitation Erosion Resistance of Fe-Based Amorphous/Nanocrystal Coatings Prepared by High-Velocity Arc Spraying, J. Therm. Spray Technol., 2013, 23, p 742-749

    Article  Google Scholar 

  21. A.G.M. Pukasiewicz, P.R.C. Alcover, Jr., A.R. Capra, and R.S.C. Paredes, Influence of Plasma Remelting on the Microstructure and Cavitation Resistance of Arc-Sprayed Fe-Mn-Cr-Si Alloy, J. Therm. Spray Technol., 2013, 23, p 51-59

    Article  Google Scholar 

  22. B. Kushner and E. Novinski, Thermal Spray Coatings, ASM Handbook Vol. 18: Friction, lubrication and wear technology, P.J. Blau, Ed., ASM International, Materials Park, 1992

    Google Scholar 

  23. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, Wiley, London, 1995

    Google Scholar 

  24. R. Kromer, J. Cormier, and S. Costil, Role of Powder Granulometry and Substrate Topography in Adhesion Strength of Thermal Spray Coatings, J. Therm. Spray Technol., 2016, 25, p 933-945

    Article  Google Scholar 

  25. M. Li and P.D. Christofides, Feedback Control of HVOF Thermal Spray Process Accounting for Powder Size Distribution, J. Therm. Spray Technol., 2004, 13(1), p 108-120

    Article  Google Scholar 

  26. K. Bobzin, M. Öte, T.F. Linke, and K.M. Malik, Wear and Corrosion Resistance of Fe-Based Coatings Reinforced by TiC Particles for Application in Hydraulic Systems, J. Therm. Spray Technol., 2015, 25, p 365-374

    Article  Google Scholar 

  27. Y. Qin, Y. Wu, J. Zhang, S. Hong, W. Guo, L. Chen, and H. Liu, Optimization of the HVOF Spray Parameters by Taguchi Method for High Corrosion-Resistant Fe-Based Coatings, J. Mater. Eng. Perform., 2015, 24, p 2637-2644

    Article  Google Scholar 

  28. G. Taillon, F. Pougoum, S. Lavigne, L. Ton-That, R. Schulz, E. Bousser, S. Savoie, L. Martinu, and J.-E. Klemberg-Sapieha, Cavitation Erosion Mechanisms in Stainless Steels and in Composite Metal–Ceramic HVOF Coatings, Wear, 2016, 364-365, p 201-210

    Article  Google Scholar 

  29. T. Varis, T. Suhonen, A. Ghabchi, A. Valarezo, S. Sampath, X. Liu, and S.-P. Hannula, Formation Mechanisms, Structure, and Properties of HVOF-Sprayed WC-CoCr Coatings: An Approach Toward Process Maps, J. Therm. Spray Technol., 2014, 23, p 1009-1018

    Article  Google Scholar 

  30. T.C. Hanson and G.S. Settles, Particle Temperature and Velocity Effects on the Porosity and Oxidation of an HVOF Corrosion-Control Coating, J. Therm. Spray Technol., 2002, 12, p 403-415

    Article  Google Scholar 

  31. M. Gaona, R.S. Lima, and B.R. Marple, Influence of Particle Temperature and Velocity on the Microstructure and Mechanical Behavior of High Velocity Oxy-Fuel (HVOF)-Sprayed Nanostructured Titania Coatings, J. Mater. Process. Technol., 2008, 198, p 426-435

    Article  Google Scholar 

  32. D. Poirier, J.-G. Legoux, and R.S. Lima, Engineering HVOF-Sprayed Cr3C2-NiCr Coatings: The Effect of Particle Morphology and Spraying Parameters on the Microstructure, Properties, and High Temperature Wear Performance, J. Therm. Spray Technol., 2012, 22, p 280-289

    Article  Google Scholar 

  33. B. Rajasekaran, G. Mauer, R. Vassen, A. Röttger, S. Weber, and W. Theisen, Coating of High-Alloyed, Ledeburitic Cold Work Tool Steel Applied by HVOF Spraying, J. Therm. Spray Technol., 2009, 19, p 642-649

    Article  Google Scholar 

  34. A. Röttger, S.L. Weber, W. Theisen, B. Rajasekaran, and R. Vaßen, High Velocity Oxy Fuel Spraying of Cold Work Tool Steels—A Novel Approach to Thick Coatings for Wear Protection Applications, Adv. Eng. Mater., 2009, 11(12), p 1015-1022

    Google Scholar 

  35. L. Ajdelsztajn, J. Dannenberg, J. Lopez, N. Yang, J. Farmer, and E.J. Lavernia, High-Velocity Oxygen Fuel Thermal Spray of Fe-Based Amorphous Alloy: A Numerical and Experimental Study, Metall. Mater. Trans. A, 2009, 40A, p 2231-2240

    Article  Google Scholar 

  36. G.B. Sucharski, A.G.M. Pukasiewicz, R.F. Váz, and R.S.C. Paredes, Optimization of the Deposition Parameters of HVOF FeMnCrSi+Ni+B Thermally Sprayed Coatings, Soldag. Insp., 2015, 20(2), p 238-252

    Article  Google Scholar 

  37. M. Tanaka and C.S. Choi, Trans. ISIJ, 1972, 12, p 16-18

    Google Scholar 

  38. D.-S. Leem, Y.-D. Lee, J.-H. Jun, and C.-S. Choi, Amount of Retained Austenite at Room Temperature After Reverse Transformation of Martensite to Austenite in an Fe-13%Cr-7%Ni-3%Si Martensitic Stainless Steel, Scr. Mater., 2001, 45, p 767-772

    Article  Google Scholar 

  39. I.M. Zylla, Gefügeoptimierung von metastabilen austenitischen Cr-Mn-Stählen zur Erhöhung der Kavitationsbeständigkeit durch verformungsinduzierte martensitische Umwandlung. Dissertation/PhD Thesis, 1991, VDI-Verlag GmbH.

  40. I. Astm, ASTM E2109-2014, Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings, 2014

  41. I. Astm, ASTM E384-11, Standard Test Method for Knoop and Vickers Hardness of Materials, 2011

  42. A.G. Evans and T.R. Wilshaw, Quasi-Static Solid Particle Damage in Brittle Solid. I. Observations Analysis and Implications, Acta Metall., 1976, 24, p 939-956

    Article  Google Scholar 

  43. T. Varis, T. Suhonen, A. Ghabchi, A. Valarezo, S. Sampath, X. Liu, and S.P. Hannula, Formation Mechanisms, Structure, and Properties of HVOF-Sprayed WC-CoCr Coatings: An Approach Toward Process Maps, J. Therm. Spray Technol, 2014, 23(6), p 1009-1018

    Article  Google Scholar 

  44. I. Astm, ASTM G32-03, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus, 2003

  45. A. Zambon, B. Badani, K. Eckler, F. Gärtner, A.F. Norman, A.L. Greer, D.M. Herlach, and E. Ramous, Microstructure and Phase Selection in Containerless Processing of Fe-Ni Droplets, Acta Mater., 1998, 46(13), p 4657-4670

    Article  Google Scholar 

  46. D. Dunne, Shape Memory in Ferrous Alloys. In: E. Pereloma, D. Edmonds. Phase Transformations in Steel, Vol. 2: Diffusionless Transformations, High Strength Steels, Modeling and Advanced Analytical Techniques. Woodhead Publishing, 2012, p 83-125

  47. M.H. Amushahi, F. Ashrafizadeh and F.M. Shamanian, Characterization of Boride-Rich Hardfacing on Carbon Steel by Arc Spray and GMAW Processes, Surf. Coat. Technol., 2010, 204(16-17), p 2723-2728

    Article  Google Scholar 

  48. V.V. Sobolev and J.M. Guilemany, Investigation of Coating Porosity Formation During High Velocity Oxy-Fuel (HVOF) Spraying, Mater. Lett., 1994, 18(5-6), p 304-308

    Article  Google Scholar 

  49. M.P. Planche, H. Liao, B. Normand, and C. Coddet, Relationships Between NiCrBSi Particle Characteristics and Corresponding Coating Properties Using Different Thermal Spraying Processes, Surf. Coat. Technol., 2005, 200(7), p 2465-2473

    Article  Google Scholar 

  50. M. Oksa and J. Metsäjoki, Optimizing NiCr and FeCr HVOF Coating Structures for High Temperature Corrosion Protection Applications, J. Therm. Spray Technol., 2015, 24(3), p 436-453

    Article  Google Scholar 

  51. C.-J. Li and Y.-Y. Wang, Effect of Particle State on the Adhesive Strength of HVOF Sprayed Metallic Coating, J. Therm. Spray Technol., 2002, 11(4), p 523-529

    Article  Google Scholar 

  52. M.C. Morris, H.F. McMurdie, E.H. Evans, B. Paretzkin, H.S. Parker, and N.C. Panagiotopoulos, Standard X-ray Diffraction Powder Patterns Section 18: Data for 58 Substances, Nat Bureau Stand. (U.S.) Monogr., 1981, 25(18), p 37

    Google Scholar 

  53. S. Kuroda, Y. Tashiro, H. Yumoto, S. Taira, H. Fukanuma, and S. Tobe, Peening Action and Residual Stresses in High-Velocity Oxygen Fuel Thermal Spraying of 316L Stainless Steel, J. Therm. Spray Technol., 2001, 10(2), p 642-649

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Federal University of Technology Paraná, Ponta Grossa, Brazil (UTFPR-PG), the Thermal Spray and Special Welding Laboratory from Federal University of Paraná, Curitiba, Brazil (LABATS - UFPR), and the Institutos LACTEC, Curitiba, Brazil, for the availability of research structure. The Clausthal University of Technology, Germany, for the atomization of powder for this research. The Revesteel Metallization Company, Brazil, for the HVOF deposition. The Copel Geração e Transmissão S/A, for funding the research Project ANEEL PD-6491-0023/2010. The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the provision of the scholarship, which assisted in the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Silveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silveira, L.L., Sucharski, G.B., Pukasiewicz, A.G.M. et al. Influence of Particle Size Distribution on the Morphology and Cavitation Resistance of High-Velocity Oxygen Fuel Coatings. J Therm Spray Tech 27, 695–709 (2018). https://doi.org/10.1007/s11666-018-0708-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0708-0

Keywords

Navigation