Skip to main content
Log in

Plasma-Sprayed Photocatalytic Zinc Oxide Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Fabrication of semiconductor coatings with photocatalytic action for photodegradation of organic pollutants is highly desirable. In this research, pure zinc oxide, which is well known for its promising photocatalytic activity, was deposited on stainless-steel plates by plasma spraying. The phase composition and microstructure of the deposited films were studied by x-ray diffraction analysis and scanning electron microscopy, respectively. Despite the low-energy conditions of the plasma spraying process, the zinc oxide coatings showed good mechanical integrity on the substrate. Their photocatalytic activity was evaluated using aqueous solution of methylene blue at concentration of 5 mg L−1. The results showed the potential of the plasma spraying technique to deposit zinc oxide coatings with photocatalytic action under ultraviolet illumination. Ultraviolet–visible (UV–Vis) diffuse reflectance spectroscopy confirmed that the plasma spraying method could deposit zinc oxide films with higher photoabsorption ability relative to the initial powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F.-L. Toma, L.-M. Berger, I. Shakhverdova, B. Leupolt, A. Potthoff, K. Oelschlagel, T. Meissner, J.A.I. Gomez, and Y. de Miguel, Parameters Influencing the Photocatalytic Activity of Suspension-Sprayed TiO2 Coatings, J. Therm. Spray Technol., 2014, 23, p 1037-1053

    Article  Google Scholar 

  2. G.-J. Yang, C.-J. Li, C.-X. Li, Y.-Y. Wang, and X.-C. Huang, Effect of Cu2+ Doping on Photocatalytic Performance of Liquid Flame Sprayed TiO2 Coatings, J. Therm. Spray Technol., 2006, 15, p 582-586

    Article  Google Scholar 

  3. G. Mahmodi, S. Sharifnia, F. Rahimpour, and S.N. Hosseini, Photocatalytic Conversion of CO2 and CH4 Using ZnO Coated Mesh: Effect of Operational Parameters and Optimization, Sol. Energy Mater. Sol. Cells, 2013, 111, p 31-40

    Article  Google Scholar 

  4. F.-L. Toma, D. Sokolov, G. Bertrand, D. Klein, C. Coddet, and C. Meunier, Comparison of the Photocatalytic Behavior of TiO2 Coatings Elaborated by Different Thermal Spraying Processes, J. Therm. Spray Technol., 2006, 15, p 576-581

    Article  Google Scholar 

  5. P.L. Gentili, M. Penconi, F. Costantino, P. Sassi, F. Ortica, F. Rossi, and F. Elisei, Structural and Photophysical Characterization of Some La2xGa2yIn2zO3 Solid Solutions, To Be Used as Photocatalysts for H2 Production from Water/Ethanol Solutions, Sol. Energy Mater. Sol. Cells, 2010, 94, p 2265-2274

    Article  Google Scholar 

  6. D. Wang, Y. Li, G.L. Puma, C. Wang, P. Wang, W. Zhang, and Q. Wang, Mechanism and Experimental Study on the Photocatalytic Performance of Ag/AgCl @ Chiral TiO2 Nanofibers Photocatalyst: The Impact of Wastewater Components, J. Hazard. Mater., 2015, 285, p 277-284

    Article  Google Scholar 

  7. M.M. Gui, S.-P. Chai, B.-Q. Xu, and A.R. Mohamed, Enhanced Visible Light Responsive MWCNT/TiO2 Core-Shell Nanocomposites as the Potential Photocatalyst for Reduction of CO2 into Methane, Sol. Energy Mater. Sol. Cells, 2014, 122, p 183-189

    Article  Google Scholar 

  8. S.A. Mahmoud and O.A. Fouad, Synthesis and Application of Zinc/Tin Oxide Nanostructures in Photocatalysis and Dye Sensitized Solar Cells, Sol. Energy Mater. Sol. Cells, 2015, 136, p 38-43

    Article  Google Scholar 

  9. O.A. Fouad, A.A. Ismail, Z.I. Zaki, and R.M. Mohamed, Zinc Oxide Thin Films Prepared by Thermal Evaporation Deposition and Its Photocatalytic Activity, Appl. Catal. B Environ., 2006, 62, p 144-149

    Article  Google Scholar 

  10. C. Bahrini, A. Parker, C. Schoemaecker, and C. Fittschen, Direct Detection of HO2 Radicals in the Vicinity of TiO2 Photocatalytic Surfaces Using Cw-CRDS, Appl. Catal. B Environ., 2010, 99, p 413-419

    Article  Google Scholar 

  11. J. Zhang, Y. Hu, X. Jiang, S. Chen, S. Meng, and X. Fu, Design of a Direct Z-Scheme Photocatalyst: Preparation and Characterization of Bi2O3/g-C3N4 With High Visible Light Activity, J. Hazard. Mater., 2014, 280, p 713-722

    Article  Google Scholar 

  12. F.-X. Ye, A. Ohmori, T. Tsumura, K. Nakata, and C.-J. Li, Microstructural Analysis and Photocatalytic Activity of Plasma-Sprayed Titania-Hydroxyapatite Coatings, J. Therm. Spray Technol., 2007, 16, p 776-782

    Article  Google Scholar 

  13. K. Ren, Y. Liu, X. He, and H. Li, Suspension Plasma Spray Fabrication of Nanocrystalline Titania Hollow Microspheres for Photocatalytic Applications, J. Therm. Spray Technol., 2015, 24, p 1213-1220

    Article  Google Scholar 

  14. M. Gardon, C. Fernandez-Rodriguez, D. Garzon Sousa, J.M. Dona-Rodriguez, S. Dosta, I.G. Cano, and J.M. Guilemany, Photocatalytic Activity of Nanostructured Anatase Coatings Obtained by Cold Gas Spray, J. Therm. Spray Technol., 2014, 23, p 1135-1141

    Article  Google Scholar 

  15. M. Yamada, H. Isago, H. Nakano, and M. Fukumoto, Cold Spraying of TiO2 Photocatalyst Coating With Nitrogen Process Gas, J. Therm. Spray Technol., 2010, 19, p 1218-1223

    Article  Google Scholar 

  16. G.J. Yang, C.J. Li, S.Q. Fan, Y.Y. Wang, and C.X. Li, Influence of Annealing on Photocatalytic Performance and Adhesion of Vacuum Cold-Sprayed Nanostructured TiO2 Coating, J. Therm. Spray Technol., 2007, 16, p 873-880

    Article  Google Scholar 

  17. M. Bozorgtabar, M. Rahimipour, M. Salehi, and M. Jafarpour, Structure and Photocatalytic Activity of TiO2 Coatings Deposited by Atmospheric Plasma Spraying, Surf. Coat. Technol., 2011, 205, p S229-S231

    Article  Google Scholar 

  18. Y. Liu, J. Huang, S. Ding, Y. Liu, J. Yuan, and H. Li, Deposition, Characterization, and Enhanced Adherence of Escherichia coli Bacteria on Flame-Sprayed Photocatalytic Titania-Hydroxyapatite Coatings, J. Therm. Spray Technol., 2013, 22, p 1053-1062

    Article  Google Scholar 

  19. G.J. Yang, C.J. Li, X.C. Huang, C.X. Li, and Y.Y. Wang, Influence of Silver Doping on Photocatalytic Activity of Liquid-Flame-Sprayed-Nanostructured TiO2 Coating, J. Therm. Spray Technol., 2007, 16, p 881-885

    Article  Google Scholar 

  20. M. Bozorgtabar, M. Rahimipour, and M. Salehi, Novel Photocatalytic TiO2 Coatings Produced by HVOF Thermal Spraying Process, Mater. Lett., 2010, 64, p 1173-1175

    Article  Google Scholar 

  21. D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, and M.C. Thurnauer, Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR, J. Phys. Chem. B, 2003, 107, p 4545-4549

    Article  Google Scholar 

  22. T. Ohno, K. Tokieda, S. Higashida, and M. Matsumura, Synergism Between Rutile and Anatase TiO2 Particles in Photocatalytic Oxidation of Naphthalene, Appl. Catal. A Gen., 2003, 244, p 383-391

    Article  Google Scholar 

  23. T. Ohno, K. Sarukawa, K. Tokieda, and M. Matsumura, Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phase, J. Catal., 2001, 203, p 82-86

    Article  Google Scholar 

  24. R.I. Bickley, T. Gonzalez-Carreno, J.S. Lees, L. Palmisano, and R.J.D. Tilley, A Structural Investigation of Titanium Dioxide Photocatalysts, J. Solid State Chem., 1991, 92, p 178-190

    Article  Google Scholar 

  25. Y. Yao, J. Qin, H. Chen, F. Wei, X. Liu, J. Wang, and S. Wang, One-Pot Approach for Synthesis of N-doped TiO2/ZnFe2O4 Hybrid as an Efficient Photocatalyst for Degradation of Aqueous Organic Pollutants, J. Hazard. Mater., 2015, 291, p 28-37

    Article  Google Scholar 

  26. E. Yassitepe, H.C. Yatmaz, C. Ozturk, K. Ozturk, and C. Duran, Photocatalytic Efficiency of ZnO Plates in Degradation of Azo Dye Solutions, J. Photochem. Photobiol. A Chem., 2008, 198, p 1-6

    Article  Google Scholar 

  27. C.A.K. Gouvea, F. Wypych, S.G. Moraes, N. Duran, N. Nagata, and P. Peralta-Zamora, Semiconductor-Assisted Photocatalytic Degradation of Reactive Dyes in Aqueous Solution, Chemosphere, 2000, 40, p 433-440

    Article  Google Scholar 

  28. G.T. Delgado, C.I.Z. Romero, S.A.M. Hernandez, R.C. Perez, and O.Z. Angel, Optical and Structural Properties of the Sol–Gel-Prepared ZnO Thin Films and Their Effect on the Photocatalytic Activity, Sol. Energy Mater. Sol. Cells, 2009, 93, p 55-59

    Article  Google Scholar 

  29. M.Y. Guo, A.M. Ching Ng, F. Liu, A.B. Djurisic, W.K. Chan, H. Su, and K.S. Wong, Effect of Native Defects on Photocatalytic Properties of ZnO, J. Phys. Chem. C, 2011, 115, p 11095-11101

    Article  Google Scholar 

  30. W. Xie, Y. Li, W. Sun, J. Huang, H. Xie, and X. Zhao, Surface Modification of ZnO With Ag Improves Its Photocatalytic Efficiency and Photostability, J. Photochem. Photobiol. A Chem., 2010, 216, p 149-155

    Article  Google Scholar 

  31. S. Jayaraman, P. Suresh Kumar, D. Mangalaraj, R. Dharmarajan, S. Ramakrishna, and M.P. Srinivasan, Gold Nanoparticle Immobilization on ZnO Nanorods via Bi-functional Monolayers: A Facile Method to Tune Interface Properties, Surf. Sci., 2015, 641, p 23-29

    Article  Google Scholar 

  32. A. Lloyd, D. Cornil, A.C.T. van Duin, D. van Duin, R. Smith, S.D. Kenny, J. Cornil, and D. Beljonne, Development of a ReaxFF Potential for Ag/Zn/O and Application to Ag Deposition on ZnO, Surf. Sci., 2016, 645, p 67-73

    Article  Google Scholar 

  33. M.A. Lahmer and K. Guergouri, Effect of Hydrogen Adsorption on the Electronic and Optical Properties of the Mg-Doped O-Terminated ZnO Surface, Surf. Sci., 2015, 633, p 24-28

    Article  Google Scholar 

  34. A. Zyoud, A. Zubi, M.H.S. Helal, D. Park, G. Campet, and H.S. Hilal, Optimizing Photo-mineralization of Aqueous Methyl Orange by Nano-ZnO Catalyst under Simulated Natural Conditions, J. Environ. Health Sci. Eng., 2015, 13, p 1-10

    Article  Google Scholar 

  35. S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, and V. Murugesan, Solar Photocatalytic Degradation of Azo Dye: Comparison of Photocatalytic Efficiency of ZnO and TiO2, Sol. Energy Mater. Sol. Cells, 2003, 77, p 65-82

    Article  Google Scholar 

  36. S.A. Ansari, M.M. Khan, M.O. Ansari, and M.H. Cho, Silver Nanoparticles and Defect-Induced Visible Light Photocatalytic and Photoelectrochemical Performance of Ag@m-TiO2 Nanocomposite, Sol. Energy Mater. Sol. Cells, 2015, 141, p 162-170

    Article  Google Scholar 

  37. M.-H. Hsu and C.-J. Chang, Ag-Doped ZnO Nanorods Coated Metal Wire Meshes as Hierarchical Photocatalysts With High Visible-Light Driven Photoactivity and Photostability, J. Hazard. Mater., 2014, 278, p 444-453

    Article  Google Scholar 

  38. O. Tari, A. Aronne, M.L. Addonizio, S. Daliento, E. Fanelli, and P. Pernice, Sol–Gel Synthesis of ZnO Transparent and Conductive Films: A Critical Approach, Sol. Energy Mater. Sol. Cells, 2012, 105, p 179-186

    Article  Google Scholar 

  39. Y.H. Cheng, L.K. Teh, Y.Y. Tay, H.S. Park, C.C. Wong, and S. Li, Coating Process of ZnO Thin Film on Macroporous Silica Periodic Array, Thin Solid Films, 2006, 504, p 41-44

    Article  Google Scholar 

  40. Z. Jiwei, Z. Liangying, and Y. Xi, The Dielectric Properties and Optical Propagation Loss of C-Axis Oriented ZnO Thin Films Deposited by Sol–Gel Process, Ceram. Int., 2000, 26, p 883-885

    Article  Google Scholar 

  41. Y. Yamaguchi, M. Yamazaki, S. Yoshihara, and T. Shirakashi, Photocatalytic ZnO Films Prepared by Anodizing, J. Electroanal. Chem., 1998, 442, p 1-3

    Article  Google Scholar 

  42. A. Akyol and M. Bayramoglu, Photocatalytic Performance of ZnO Coated Tubular Reactor, J. Hazard. Mater., 2010, 180, p 466-473

    Article  Google Scholar 

  43. A. Yasutaka, K. Akira, T. Shogo, and T. Hirokazu, High Rate Zinc Oxide Film Deposition by Atmospheric TPCVD Using Ar/Air Plasma Jets, Trans. JWRI, 2008, 37, p 33-37

    Google Scholar 

  44. J.L. Yang, S.J. An, W.I. Park, G.C. Yi, and W. Choi, Photocatalysis Using ZnO Thin Films and Nanoneedles Grown by Metal-Organic Chemical Vapor Deposition, Adv. Mater., 2004, 16, p 1661-1664

    Article  Google Scholar 

  45. Ya.I. Alivov, A.V. Chernykh, M.V. Chukichev, and R.Y. Korotkov, Thin Polycrystalline Zinc Oxide Films Obtained by Oxidation of Metallic Zinc Films, Thin Solid Films, 2005, 473, p 241-246

    Article  Google Scholar 

  46. R.K. Gupta, N. Shridhar, and M. Katiyar, Structure of ZnO Films Prepared by Oxidation of Metallic Zinc, Mater. Sci. Semicond. Process., 2002, 5, p 11-15

    Article  Google Scholar 

  47. Y.G. Wang, S.P. Lau, H.W. Lee, S.F. Yu, B.K. Tay, X.H. Zhang, and H.H. Hng, Photoluminescence Study of ZnO Films Prepared by Thermal Oxidation of Zn Metallic Films in Air, J. Appl. Phys., 2003, 94, p 354-358

    Article  Google Scholar 

  48. M. Miki-Yoshida, V. Collins-Martinez, P. Amezaga-Madrid, and A. Aguilar-Elguezabal, Thin Films of Photocatalytic TiO2 and ZnO Deposited Inside a Tubing by Spray Pyrolysis, Thin Solid Films, 2002, 419, p 60-64

    Article  Google Scholar 

  49. M.A. Behnajady, N. Modirshahla, N. Daneshvar, and M. Rabbani, Photocatalytic Degradation of C.I. Acid Red 27 by Immobilized ZnO on Glass Plates in Continuous-Mode, J. Hazard. Mater., 2007, 140, p 257-263

    Article  Google Scholar 

  50. S. Choopun, H. Tabata, and T. Kawai, Self-Assembly ZnO Nanorods by Pulsed Laser Deposition under Argon Atmosphere, J. Cryst. Growth, 2005, 274, p 167-172

    Article  Google Scholar 

  51. A.M. Rosa, E.P. da Silva, M. Chaves, L.D. Trino, P.N. Lisboa-Filho, T.F. da Silva, S.F. Durrant, and J.R.R. Bortoleto, Structural Transition of ZnO Thin Films Produced by RF Magnetron Sputtering at Low Temperatures, J. Mater. Sci. Mater. Electron., 2013, 24, p 3143-3148

    Article  Google Scholar 

  52. S.-S. Lin and J.-L. Huang, Effect of Thickness on the Structural and Optical Properties of ZnO Films by R.F. Magnetron Sputtering, Surf. Coat. Technol., 2004, 185, p 222-227

    Article  Google Scholar 

  53. V.R. Shinde, T.P. Gujar, and C.D. Lokhande, Studies on Growth of ZnO Thin Films by a Novel Chemical Method, Sol. Energy Mater. Sol. Cells, 2007, 91, p 1055-1061

    Article  Google Scholar 

  54. A.E. Jimenez-Gonzalez, Modification of ZnO Thin Films by Ni, Cu, and Cd Doping, J. Solid State Chem., 1997, 128, p 176-180

    Article  Google Scholar 

  55. M. Li, J. Zhai, H. Liu, Y. Song, L. Jiang, and D. Zhu, Electrochemical Deposition of Conductive Superhydrophobic Zinc Oxide Thin Films, J. Phys. Chem. B, 2003, 107, p 9954-9957

    Article  Google Scholar 

  56. C. Zhang, M. Debliquy, and H. Liao, Deposition and Microstructure Characterization of Atmospheric Plasma-Sprayed ZnO Coatings for NO2 Detection, Appl. Surf. Sci., 2010, 256, p 5905-5910

    Article  Google Scholar 

  57. M. Tului, A. Bellucci, A. Albolino, and G. Migliozzi, Zinc Oxide Targets for Magnetron Sputtering PVD Prepared by Plasma Spray, Surf. Coat. Technol., 2010, 205, p 1070-1073

    Article  Google Scholar 

  58. M. Tului, F. Arezzo, and L. Pawlowski, Optical Properties of Plasma Sprayed ZnO + Al2O3 Coatings, Surf. Coat. Technol., 2004, 179, p 47-55

    Article  Google Scholar 

  59. F. Ye and A. Ohmori, The Photocatalytic Activity and Photo-Absorption of Plasma Sprayed TiO2-Fe3O4 Binary Oxide Coatings, Surf. Coat. Technol., 2002, 160, p 62-67

    Article  Google Scholar 

  60. J. Wrobel and J. Piechota, On the Structural Stability of ZnO Phases, Solid State Commun., 2008, 146, p 324-329

    Article  Google Scholar 

  61. G. Varughese, K.T. Usha, and A.S. Kumar, Characterisation and Band Gap Energy of Wurtzite ZnO: La Nanocrystallites, IJLRST, 2014, 3, p 133-136

    Google Scholar 

  62. N. Ghajari, A. Kompany, T. Movlarooy, F. Roozban, and M. Majidiyan, Synthesis, Experimental and Theoretical Investigations of Zn1_xCuxO Nanopowders, J. Magn. Magn. Mater., 2013, 325, p 42-46

    Article  Google Scholar 

  63. A. Ashrafi and C. Jagadish, Review of Zincblende ZnO: Stability of Metastable ZnO Phases, J. Appl. Phys., 2007, 102, p 071101

    Article  Google Scholar 

  64. S. Guessasma, G. Montavon, and C. Coddet, Velocity and Temperature Distributions of Alumina-Titania In-Flight Particles in the Atmospheric Plasma Spray Process, Surf. Coat. Technol., 2005, 192, p 70-76

    Article  Google Scholar 

  65. M. Xue, S. Chandra, J. Mostaghimi, and C. Moreau, A Stochastic Coating Model to Predict the Microstructure of Plasma Sprayed Zirconia Coatings, Model. Simul. Mater. Sci. Eng., 2008, 16, p 065006-065024

    Article  Google Scholar 

  66. R. Ghafouri-Azar, J. Mostaghimi, S. Chandra, and M. Charmchi, A Stochastic Model to Simulate the Formation of a Thermal Spray Coating, J. Therm. Spray Technol., 2003, 12, p 53-69

    Article  Google Scholar 

  67. G. Yoruk and O. Ozdemir, The Evaluation of NiAl- and TiAl-Based Intermetallic Coatings Produced on the AISI, 1010 Steel by an Electric Current-Activated Sintering Method, Intermetallics, 2012, 25, p 60-65

    Article  Google Scholar 

  68. N. Ergin, G. Yoruk, and O. Ozdemir, Characterization of Ni3Al and Ti3Al Coatings Produced by Electric Current Activated Sintering Method, Acta Phys. Pol., A, 2013, 123, p 245-247

    Article  Google Scholar 

  69. M. Bozorgtabar, M. Rahimipour, M. Salehi, and M. Jafarpour, The Photo-Absorption and Surface Feature of Nano-Structured TiO2 Coatings, WASET, 2011, 56, p 346-348

    Google Scholar 

  70. I. Zielinska, J. Szlachetko, A.M. Cieslak, K. Sokolowski, J. Lewinski, and J. Sa, Synthesis, Characterization and Application to Catalysis of ZnO Nanocrystals, Chem. Sci. Rev. Lett., 2015, 4, p 735-745

    Google Scholar 

  71. G. Buxbaum and G. Pfaff, Ed., Industrial Inorganic Pigments, 3rd ed., Wiley, Weinheim, 2005

    Google Scholar 

  72. J.F. Bisson and C. Moreau, Effect of Direct-Current Plasma Fluctuations on In-Flight Particle Parameters: Part II, J. Therm. Spray Technol., 2003, 12, p 258-264

    Article  Google Scholar 

  73. Y. Cai, T.W. Coyle, G. Azimi, and J. Mostaghimi, Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray, Sci. Rep., 2016, 6, p 24670

    Article  Google Scholar 

  74. MdF Hasan, J. Wang, and C.C. Berndt, Effect of Power and Stand-Off Distance on Plasma Sprayed Hydroxyapatite Coatings, Mater. Manuf. Process., 2013, 28, p 1279-1285

    Article  Google Scholar 

  75. S. Bharathi, D. Nataraj, D. Mangalaraj, Y. Masuda, K. Senthil, and K. Yong, Highly Mesoporous α-Fe2O3 Nanostructures: Preparation, Characterization and Improved Photocatalytic Performance towards Rhodamine B (RhB), J. Phys. D Appl. Phys., 2010, 43, p 015501-015509

    Article  Google Scholar 

  76. C. Zhang, U. Chaudhary, S. Das, A. Godavarty, and A. Agarwal, Effect of Porosity on Photocatalytic Activity of Plasma-Sprayed TiO2 Coating, J. Therm. Spray Technol., 2013, 22, p 1193-1200

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Navidpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navidpour, A.H., Kalantari, Y., Salehi, M. et al. Plasma-Sprayed Photocatalytic Zinc Oxide Coatings. J Therm Spray Tech 26, 717–727 (2017). https://doi.org/10.1007/s11666-017-0541-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0541-x

Keywords

Navigation