Skip to main content
Log in

Anisotropic Mechanical Properties of Plasma-Sprayed Thermal Barrier Coatings at High Temperature Determined by Ultrasonic Method

  • Technical Note
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The mechanical properties of plasma-sprayed thermal barrier coatings (TBC) are of great scientific and technological significance for the design and fabrication of TBC systems. The ultrasonic method combined with a sing-around method for mechanical properties measurement of TBC is deduced and the elastic modulus can be determined in the spray, or longitudinal, direction, and the transverse direction. Tested specimens of plasma-sprayed TBC are detached from the substrate and treated with thermal exposure at 1400 °C. The elastic moduli along the longitudinal and transverse directions of the TBCs are measured by different types of ultrasonic waves combined with a sing-around method, while the Poisson’s ratio is also obtained simultaneously. The experimental results indicate that the magnitude of longitudinal elastic modulus is larger than that of the transverse one, and thus the plasma-sprayed TBC has an anisotropic mechanical property. Moreover, the elastic moduli along both longitudinal and transverse directions change with high-temperature exposure time, which consists of a rapid increasing stage followed by a slow decreasing stage. In addition, the magnitude of Poisson’s ratio increases slightly from 0.05 to 0.2 with the high-temperature exposure time. Generally, the microstructures in the plasma-sprayed coatings and their evolution in a high-temperature environment are the main causes of the varying anisotropic mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Ma, H.M. Xie, J.G. Zhu, and H.X. Wang, Physical and Mechanical Properties of Plasma-Sprayed Thermal Barrier Coatings at Room and High Temperatures, Surf. Coat. Technol., 2014, 253, p 58-67

    Article  Google Scholar 

  2. M. Asmani, C. Kermel, A. Leriche, and M. Ourak, Influence of Porosity on Young’s Modulus and Poisson’s Ratio in Alumina Ceramics, J. Eur. Ceram. Soc., 2001, 21(8), p 1081-1086

    Article  Google Scholar 

  3. E.P. Busso and Z.Q. Qian, A Mechanistic Study of Microcracking in Transversely Isotropic Ceramic-Metal Systems, Acta Mater., 2006, 54(2), p 325-338

    Article  Google Scholar 

  4. J.G. Zhu, W. Chen, and H.M. Xie, Simulation of Residual Stresses and Their Effects on Thermal Barrier Coating Systems Using Finite Element Method, Sci. China-Phys. Mech. Astron., 2015, 58(3), p 1-10

    Google Scholar 

  5. C. Eberl, D.S. Gianola, X. Wang, M.Y. He, A.G. Evans, and K.J. Hemker, A Method for In Situ Measurement of the Elastic Behavior of a Columnar Thermal Barrier Coating, Acta Mater., 2011, 59(9), p 3612-3620

    Article  Google Scholar 

  6. S.R. Choi, D.M. Zhu, and R.A. Miller, Mechanical Properties/Database of Plasma-Sprayed ZrO2-8wt.% Y2O3 Thermal Barrier Coatings, Int. J. Appl. Ceram. Technol., 2004, 1(4), p 330-342

    Article  Google Scholar 

  7. R. Schmidt, P. Alpern, and R. Tilgner, Measurement of the Young’s Modulus of Moulding Compounds at Elevated Temperatures with a Resonance Method, Polym. Test, 2005, 24(2), p 137-143

    Article  Google Scholar 

  8. K. Ma, J.G. Zhu, H.M. Xie, and H.X. Wang, Effect of Porous Microstructure on the Elastic Modulus of Plasma-Sprayed Thermal Barrier Coatings: Experiment and Numerical Analysis, Surf. Coat. Technol., 2013, 235, p 589-595

    Article  Google Scholar 

  9. Y. Liu, T. Nakamura, V. Srinivasan, A. Vaidya, A. Gouldstone, and S. Sampath, Non-linear elastic Properties of Plasma-Sprayed Zirconia Coatings and Associated Relationships with Processing Conditions, Acta Mater., 2007, 55(14), p 4667-4678

    Article  Google Scholar 

  10. J. Matejicek and S. Sampath, In situ Measurement of Residual Stresses and Elastic Moduli in Thermal Sprayed Coatings: Part 1: Apparatus and Analysis, Acta Mater., 2003, 51(3), p 863-872

    Article  Google Scholar 

  11. X. Yang, Z. Liu, and H. Xie, A Real Time Deformation Evaluation Method for Surface and Interface of Thermal Barrier Coatings During 1100 °C Thermal Shock, Meas. Sci. Technol., 2012, 23(10), p 105604

    Article  Google Scholar 

  12. M. Alfano, G. Di Girolamo, L. Pagnotta, and D. Sun, Processing, Microstructure and Mechanical Properties of Air Plasma-Sprayed Ceria-Yttria Co-stabilized Zirconia Coatings, Strain, 2010, 46(5), p 409-418

    Article  Google Scholar 

  13. S. Guo and Y. Kagawa, Young’s Moduli of Zirconia Top-Coat and Thermally Grown Oxide in a Plasma-Sprayed Thermal Barrier Coating System, Scr. Mater., 2004, 50(11), p 1401-1406

    Article  Google Scholar 

  14. N. Zotov, M. Bartsch, and G. Eggeler, Thermal Barrier Coating Systems: Analysis of Nanoindentation Curves, Surf. Coat. Technol., 2009, 203(14), p 2064-2072

    Article  Google Scholar 

  15. S.V. Raj, R. Pawlik, and W. Loewenthal, Young’s Moduli of Cold and Vacuum Plasma Sprayed Metallic Coatings, Mater. Sci. Eng. A, 2009, 513-514, p 59-63

    Article  Google Scholar 

  16. G. Roebben and O. Van der Biest, Recent Advances in the Use of the Impulse Excitation Technique for the Characterisation of Stiffness and Damping of Ceramics, Ceramic Coatings and Ceramic Laminates at Elevated Temperature, Euro Ceramics Vii, Pt, 2002, 1-3, p 621-624

    Google Scholar 

  17. W. Tillmann, U. Selvadurai, and W. Luo, Measurement of the Young’s Modulus of Thermal Spray Coatings by Means of Several Methods, J. Therm. Spray Technol., 2013, 22(2-3), p 290-298

    Article  Google Scholar 

  18. Y. Tan, A. Shyam, W.B. Choi, E. Lara-Curzio, and S. Sampath, Anisotropic Elastic Properties of Thermal Spray Coatings Determined Via Resonant Ultrasound Spectroscopy, Acta Mater., 2010, 58(16), p 5305-5315

    Article  Google Scholar 

  19. M. Doghmane, F. Hadjoub, A. Doghmane, and Z. Hadjoub, Approaches for Evaluating Young’s and Shear Moduli in Terms of a Single SAW Velocity Via the SAM Technique, Mater. Lett., 2007, 61(3), p 813-816

    Article  Google Scholar 

  20. J.Y. Kwon, K.H. Dong, J.H. Lee, Y.G. Jung, U. Paik, and C.Y. Jo, Anisotropic Mechanical Properties and Contact Damage in Air-Plasma-Sprayed Thermal Barrier Coatings with Bond Coating Nature and Thermal Exposure Condition, Prog. Org. Coat., 2008, 61(2-4), p 300-307

    Article  Google Scholar 

  21. T. Nakamura, G. Qian, and C.C. Berndt, Effects of Pores on Mechanical Properties of Plasma-Sprayed Ceramic Coatings, J. Am. Ceram. Soc., 2000, 83(3), p 578-584

    Article  Google Scholar 

  22. H. Terasaki, H. Yamagishi, K. Moriguchi, Y. Tomio, and Y. Komizo, Correlation Between the Thermodynamic Stability of Austenite and the Shear Modulus of Polycrystalline Steel Alloy, J. Appl. Phys., 2012, 111(9), p 093523

    Article  Google Scholar 

  23. I.M.S. Lampreia and A. Mendonca, Uncertainties of Useful Thermodynamic Properties Calculated from Ultrasound Speed Measurements in Liquids and Solutions, Meas. Sci. Technol., 2005, 16(11), p 2391-2395

    Article  Google Scholar 

  24. S.R. Choi, D.M. Zhu, and R.A. Miller, Effect of Sintering on Mechanical Properties of Plasma-Sprayed Zirconia-Based Thermal Barrier Coatings, J. Am. Ceram. Soc., 2005, 88(10), p 2859-2867

    Article  Google Scholar 

  25. D. Naumenko, V. Shemet, L. Singheiser, and W.J. Quadakkers, Failure Mechanisms of Thermal Barrier Coatings on MCrAlY-Type Bondcoats Associated with the Formation of the Thermally Grown Oxide, J. Mater. Sci., 2009, 44(7), p 1687-1703

    Article  Google Scholar 

  26. F. Cernuschi, I.O. Golosnoy, P. Bison, A. Moscatelli, R. Vassen, H.P. Bossmann, and S. Capelli, Microstructural Characterization of Porous Thermal Barrier Coatings by IR Gas Porosimetry and Sintering Forecasts, Acta Mater., 2013, 61(1), p 248-262

    Article  Google Scholar 

  27. R. Taylor, J. Brandon, and P. Morrell, Microstructure, Composition and Property Relationships of Plasma-Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 1992, 50(2), p 141-149

    Article  Google Scholar 

  28. J.A. Thompson and T.W. Clyne, The Effect of Heat Treatment on the Stiffness of Zirconia Top Coats in Plasma-Sprayed TBCs, Acta Mater., 2001, 49(9), p 1565-1575

    Article  Google Scholar 

  29. Q. Chen, W.G. Mao, Y.C. Zhou, and C. Lu, Effect of Young’s Modulus Evolution on Residual Stress Measurement of Thermal Barrier Coatings by X-Ray Diffraction, Appl. Surf. Sci., 2010, 256(23), p 7311-7315

    Article  Google Scholar 

  30. M. Doghmane, F. Hadjoub, A. Doghmane, and Z. Hadjoub, Approaches for Evaluating Young’s and Shear Moduli in Terms of a Single SAW Velocity Via the SAM Technique, Mater. Lett., 2007, 61, p 813-816

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant Nos. 11232008 and 11372118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Q., Zhu, J. & Chen, W. Anisotropic Mechanical Properties of Plasma-Sprayed Thermal Barrier Coatings at High Temperature Determined by Ultrasonic Method. J Therm Spray Tech 25, 605–612 (2016). https://doi.org/10.1007/s11666-016-0378-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0378-8

Keywords

Navigation