Skip to main content
Log in

Photocatalytic Iron Oxide Coatings Produced by Thermal Spraying Process

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Recently, hematite coatings with semiconductor properties have received attention for photocatalytic applications. In this study, plasma and flame spraying techniques were used for hematite deposition on 316 stainless steel plates. X-ray diffraction was used for phase composition analysis, and methylene blue was used as an organic pollutant to evaluate the photocatalytic activity of thermally sprayed coatings. The results showed that all these coatings could act under visible-light irradiation but the one deposited by flame spraying at 20 cm stand-off distance showed the highest photocatalytic activity. The results showed that wavelength of the light source and pH of the solution affected the photocatalytic activity significantly. It was also shown that thermally sprayed iron oxide coatings could have a high photo-absorption ability, which could positively affect the photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Mozia, M. Tomaszewska, and A.W. Morawski, Photocatalytic Degradation of Azo-Dye Acid Red 18, Desalination, 2005, 185, p 449-456

    Article  Google Scholar 

  2. W. Zhou, L. Lin, W. Wang, L. Zhang, Q. Wu, J. Li, and L. Guo, Hierarchical Mesoporous Hematite with Electron-Transport Channels and Its Improved Performances in Photocatalysis and Lithium Ion Batteries, J. Phys. Chem. C, 2011, 115, p 7126-7133

    Article  Google Scholar 

  3. J. Bandara, U. Klehm, and J. Kiwi, Raschig Rings-Fe2O3 Composite Photocatalyst Activate in the Degradation of 4-Chlorophenol and Orange II, Under Daylight Irradiation, Appl. Catal. B, 2007, 76, p 73-81

    Article  Google Scholar 

  4. P. Ctibor, I. Pis, J. Kotlan, Z. Pala, I. Khalakhan, V. Stengl, and P. Homola, Microstructure and Properties of Plasma-Sprayed Mixture of Cr2O3 and TiO2, J. Therm. Spray Technol., 2013, 22, p 1163-1169

    Article  Google Scholar 

  5. J. Jang, H. Takana, Y. Ando, O.P. Solonenko, and H. Nishiyama, Preparation of Carbon Doped TiO2 Nanopowder Synthesized by Droplet Injection of Solution Precursor in a DC-RF Hybrid Plasma Flow System, J. Therm. Spray Technol., 2013, 22, p 974-982

    Article  Google Scholar 

  6. M.V. Dozzi and E. Selli, Doping TiO2 with P-Block Elements: Effects on Photocatalytic Activity, J. Photochem. Photobiol. C, 2013, 14, p 13-28

    Article  Google Scholar 

  7. G. Yang, Z. Jiang, H. Shi, T. Xiao, and Z. Yan, Preparation of Highly Visible-Light Active N-Doped TiO2 Photocatalyst, J. Mater. Chem., 2010, 20, p 5301-5309

    Article  Google Scholar 

  8. S. Buzby, M.A. Barakat, H. Lin, C. Ni, S.A. Rykov, J.G. Chen, and S. Ismat Shah, Visible Light Photocatalysis with Nitrogen-Doped Titanium Dioxide Nanoparticles Prepared by Plasma Assisted Chemical Vapor Deposition, J. Vac. Sci. Technol. B, 2006, 24, p 1210-1214

    Article  Google Scholar 

  9. C. Chen, H. Bai, S.M. Chang, C. Chang, and W. Den, Preparation of N-Doped TiO2 Photocatalyst by Atmospheric Pressure Plasma Process for VOCs Decomposition under UV and Visible Light Sources, J. Nanopart. Res., 2007, 9, p 365-375

    Article  Google Scholar 

  10. E. Grabowska, A. Zaleska, J.W. Sobczak, M. Gazda, and J. Hupka, Boron-Doped TiO2: Characteristics and Photoactivity Under Visible Light, Proc. Chem., 2009, 1, p 1553-1559

    Article  Google Scholar 

  11. Y. Wang, R. Zhang, J. Li, L. Li, and S. Lin, First-Principles Study on Transition Metal-Doped Anatase TiO2, Nanoscale Res. Lett., 2014, 9, p 46-53

    Article  Google Scholar 

  12. U.G. Akpan and B.H. Hameed, The Advancements in Sol-Gel Method of Doped-TiO2 Photocatalysts, Appl. Catal. A, 2010, 375, p 1-11

    Article  Google Scholar 

  13. C.L. Luu, Q.T. Nguyen, and S.T. Ho, Synthesis and Characterization of Fe-Doped TiO2 Photocatalyst by the Sol-Gel Method, Adv. Nat. Sci: Nanosci. Nanotechnol., 2010, 1, p 015008-015012

    Google Scholar 

  14. K. Gupta, R.P. Singh, A. Pandey, and A. Pandey, Photocatalytic Antibacterial Performance of TiO2 and Ag-Doped TiO2 against S. aureus. P. aeruginosa and E. coli, Beilstein J. Nanotechnol., 2013, 4, p 345-351

    Article  Google Scholar 

  15. M. Zhang, J. Wu, D.D. Lu, and J. Yang, Enhanced Visible Light Photocatalytic Activity for TiO2 Nanotube Array Films by Codoping with Tungsten and Nitrogen, Int. J. Photoenergy, 2013, 2013, p 471674-471681

    Google Scholar 

  16. N. Najibi Ilkhechi and B. Koozegar Kaleji, High Temperature Stability and Photocatalytic Activity of Nanocrystalline Anatase Powders with Zr and Si co-Dopants, J. Sol-Gel. Sci. Technol., 2014, 69, p 351-356

    Article  Google Scholar 

  17. S. Bharathi, D. Nataraj, D. Mangalaraj, Y. Masuda, K. Senthil, and K. Yong, Highly Mesoporous α-Fe2O3 Nanostructures: Preparation, Characterization and Improved Photocatalytic Performance Towards Rhodamine B (RhB), J. Phys. D Appl. Phys., 2010, 43, p 015501-015509

    Article  Google Scholar 

  18. A. Hosseinian, H. Rezaei, and A.R. Mahjoub, Preparation of Nanosized Iron Oxide and Their Photocatalytic Properties for Congo Red, WASET, 2011, 52, p 736-739

    Google Scholar 

  19. L. Parent and J.P. Dodelet, Phase Transformation in Plasma-Sprayed Iron Oxide Coatings, Thin Solid Films, 1987, 154, p 57-64

    Article  Google Scholar 

  20. E.L. Miller, D. Paluselli, B. Marsen, and R.E. Rocheleau, Low-Temperature Reactively Sputtered Iron Oxide for Thin Film Devices, Thin Solid Films, 2004, 466, p 307-313

    Article  Google Scholar 

  21. T. Stenberg, P. Vuoristo, J. Keränen, T. Mäntylä, M. Büchler, S. Virtanen, P. Schmuki, and H. Böhni, Characterization of R.F.-Sputtered Iron Oxide Films for Modeling Passive Films, Thin Solid Films, 1998, 312, p 46-60

    Article  Google Scholar 

  22. B.J. Kim, E.T. Lee, and G.E. Jang, Phase Transformation Phenomena from α Type to γ Type one of Fe2O3 Thin Film Deposited by PECVD, Thin Solid Films, 1999, 341, p 79-83

    Article  Google Scholar 

  23. M. Bozorgtabar, M. Rahimipour, and M. Salehi, Novel Photocatalytic TiO2 Coatings Produced by HVOF Thermal Spraying Process, Mater. Lett., 2010, 64, p 1173-1175

    Article  Google Scholar 

  24. M. Bozorgtabar, M. Rahimipour, M. Salehi, and M. Jafarpour, Structure and Photocatalytic Activity of TiO2 Coatings Deposited by Atmospheric Plasma Spraying, Surf. Coat. Technol., 2011, 205, p S229-S231

    Article  Google Scholar 

  25. F. Ye and A. Ohmori, The Photocatalytic Activity and Photo-Absorption of Plasma Sprayed TiO2-Fe3O4 Binary Oxide Coatings, Surf. Coat. Technol., 2002, 160, p 62-67

    Article  Google Scholar 

  26. F.L. Toma, D. Sokolov, G. Bertrand, D. Klein, C. Coddet, and C. Meunier, Comparison of the Photocatalytic Behavior of TiO2 Coatings Elaborated by Different Thermal Spraying Processes, J. Therm. Spray Technol., 2006, 15, p 576-581

    Article  Google Scholar 

  27. Y. Liu, J. Huang, S. Ding, Y. Liu, J. Yuan, and H. Li, Deposition, Characterization, and Enhanced Adherence of Escherichia coli Bacteria on Flame-Sprayed Photocatalytic Titania-Hydroxyapatite Coatings, J. Therm. Spray Technol., 2013, 22, p 1053-1062

    Article  Google Scholar 

  28. G.J. Yang, C.J. Li, and Y.Y. Wang, Phase Formation of Nano-TiO2 Particles During Flame Spraying with Liquid Feedstock, J. Therm. Spray Technol., 2005, 14, p 480-486

    Article  Google Scholar 

  29. G.J. Yang, C.J. Li, C.X. Li, Y.Y. Wang, and X.C. Huang, Effect of Cu2+ Doping on Photocatalytic Performance of Liquid Flame Sprayed TiO2 Coatings, J. Therm. Spray Technol., 2006, 15, p 582-586

    Article  Google Scholar 

  30. G.J. Yang, C.J. Li, X.C. Huang, C.X. Li, and Y.Y. Wang, Influence of Silver Doping on Photocatalytic Activity of Liquid-Flame-Sprayed-Nanostructured TiO2 Coating, J. Therm. Spray Technol., 2007, 16, p 881-885

    Article  Google Scholar 

  31. S.Q. Fan, G.J. Yang, C.J. Li, G.J. Liu, C.X. Li, and L.Z. Zhang, Characterization of Microstructure of Nano-TiO2 Coating Deposited by Vacuum Cold Spraying, J. Therm. Spray Technol., 2006, 15, p 513-517

    Article  Google Scholar 

  32. M. Gardon, C. Fernandez-Rodriguez, D. Garzon Sousa, J.M. Dona-Rodriguez, S. Dosta, I.G. Cano, and J.M. Guilemany, Photocatalytic Activity of Nanostructured Anatase Coatings Obtained by Cold Gas Spray, J. Therm. Spray Technol., 2014, 23, p 1135-1141

    Article  Google Scholar 

  33. M. Yamada, H. Isago, H. Nakano, and M. Fukumoto, Cold Spraying of TiO2 Photocatalyst Coating with Nitrogen Process Gas, J. Therm. Spray Technol., 2010, 19, p 1218-1223

    Article  Google Scholar 

  34. G.J. Yang, C.J. Li, S.Q. Fan, Y.Y. Wang, and C.X. Li, Influence of Annealing on Photocatalytic Performance and Adhesion of Vacuum Cold-Sprayed Nanostructured TiO2 Coating, J. Therm. Spray Technol., 2007, 16, p 873-880

    Article  Google Scholar 

  35. E.M. Cotler, D. Chen, and R.J. Molz, Pressure-Based Liquid Feed System for Suspension Plasma Spray Coatings, J. Therm. Spray Technol., 2011, 20, p 967-973

    Article  Google Scholar 

  36. F.L. Toma, G. Bertrand, D. Klein, C. Coddet, and C. Meunier, Nanostructured Photocatalytic Titania Coatings Formed by Suspension Plasma Spraying, J. Therm. Spray Technol., 2006, 15, p 587-592

    Article  Google Scholar 

  37. F.L. Toma, L.M. Berger, C.C. Stahr, T. Naumann, and S. Langner, Microstructures and Functional Properties of Suspension-Sprayed Al2O3 and TiO2 Coatings: An Overview, J. Therm. Spray Technol., 2010, 19, p 262-274

    Article  Google Scholar 

  38. F.L. Toma, L.M. Berger, I. Shakhverdova, B. Leupolt, A. Potthoff, K. Oelschlagel, T. Meissner, J.A.L. Gomez, and Y.D. Miguel, Parameters Influencing the Photocatalytic Activity of Suspension-Sprayed TiO2 Coatings, J. Therm. Spray Technol., 2014, 23, p 1037-1053

    Article  Google Scholar 

  39. S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, and V. Murugesan, Solar Photocatalytic Degradation of Azo Dye: Comparison of Photocatalytic Efficiency of ZnO and TiO2, Sol. Energy Mater. Sol. Cells, 2003, 77, p 65-82

    Article  Google Scholar 

  40. M. Bozorgtabar, M. Rahimipour, M. Salehi, and M. Jafarpour, The Photo-Absorption and Surface Feature of Nano-structured TiO2 Coatings, WASET, 2011, 56, p 346-348

    Google Scholar 

  41. A. Monshi and P.F. Messer, Ratio of Slopes Method for Quantitative X-ray Diffraction Analysis, J. Mater. Sci., 1991, 26, p 3623-3627

    Article  Google Scholar 

  42. R.J. Talib, S. Saad, M.R.M. Toff, and H. Hashim, Thermal Spray Coating Technology: A Review, J. Solid State Sci. Technol., 2003, 11, p 109-117

    Google Scholar 

  43. R. Ghafouri-Azar, J. Mostaghimi, S. Chandra, and M. Charmchi, A Stochastic Model to Simulate the Formation of a Thermal Spray Coating, J. Therm. Spray Technol., 2003, 12, p 53-69

    Article  Google Scholar 

  44. M. Xue, S. Chandra, J. Mostaghimi, and C. Moreau, A Stochastic Coating Model to Predict the Microstructure of Plasma Sprayed Zirconia Coatings, Model. Simul. Mater. Sci. Eng., 2008, 16, p 065006-065024

    Article  Google Scholar 

  45. Y. Tian, D. Wu, X. Jia, B. Yu, and S. Zhan, Core-Shell Nanostructure of α-Fe2O3 /Fe3O4: Synthesis and Photocatalysis for Methyl Orange, J. Nanomater., 2011, 2011, p 837123-837127

    Google Scholar 

  46. R. Ameta, J. Vardia, P.B. Punjabi, and S.C. Ameta, Use of Semiconducting Iron (III) Oxide in Photocatalytic Bleaching of Some Dyes, Indian J. Chem. Technol., 2006, 13, p 114-118

    Google Scholar 

  47. Q. Wei, Z. Zhang, Z. Li, Q. Zhou, and Y. Zhu, Enhanced Photocatalytic Activity of Porous α-Fe2O3 Films Prepared by Rapid Thermal Oxidation, J. Phys. D Appl. Phys., 2008, 41, p 202002-202006

    Article  Google Scholar 

  48. F.B. Li, X.Z. Li, C.S. Liu, and T.X. Liu, Effect of Alumina on Photocatalytic Activity of Iron Oxides for Bisphenol A Degradation, J. Hazard. Mater., 2007, 149, p 199-207

    Article  Google Scholar 

  49. R. Grau-Crespo, A.Y. Al-Baitai, I. Saadoune, and N.H. De Leeuw, Vacancy Ordering and Electronic Structure of γ-Fe2O3 (Maghemite): A Theoretical Investigation, J. Phys., 2010, 22, p 255401-255419

    Google Scholar 

  50. T.W. Swaddle and P. Oltmann, Kinetics of the Magnetite-Maghemite-Hematite Transformation, with Special Reference to Hydrothermal Systems, Can. J. Chem., 1980, 58, p 1763-1772

    Article  Google Scholar 

  51. B. Tarablsi, C. Delaite, J. Brendle, and C.C. Barghorn, Maghemite Intercalated Montmorillonite as New Nanofillers for Photopolymers, J. Nanomater., 2012, 2, p 413-427

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Navidpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navidpour, A.H., Salehi, M., Amirnasr, M. et al. Photocatalytic Iron Oxide Coatings Produced by Thermal Spraying Process. J Therm Spray Tech 24, 1487–1497 (2015). https://doi.org/10.1007/s11666-015-0328-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0328-x

Keywords

Navigation