Influence of Cold-Sprayed, Warm-Sprayed, and Plasma-Sprayed Layers Deposition on Fatigue Properties of Steel Specimens

Abstract

Titanium powder was deposited onto steel specimens using four thermal spray technologies: plasma spray, low-pressure cold spray, portable cold spray, and warm spray. The specimens were then subjected to strain-controlled cyclic bending test in a dedicated in-house built device. The crack propagation was monitored by observing the changes in the resonance frequency of the samples. For each series, the number of cycles corresponding to a pre-defined specimen cross-section damage was used as a performance indicator. It was found that the grit-blasting procedure did not alter the fatigue properties of the steel specimens (1% increase as compared to as-received set), while the deposition of coatings via all four thermal spray technologies significantly increased the measured fatigue lives. The three high-velocity technologies led to an increase of relative lives to 234% (low-pressure cold spray), 210% (portable cold spray), and 355% (warm spray) and the deposition using plasma spray led to an increase of relative lives to 303%. The observed increase of high-velocity technologies (cold and warm spray) could be attributed to a combination of homogeneous fatigue-resistant coatings and induction of peening stresses into the substrates via the impingement of the high-kinetic energy particles. Given the intrinsic character of the plasma jet (low-velocity impact of semi/molten particles) and the mostly ceramic character of the coating (oxides, nitrides), a hypothesis based on non-linear coatings behavior is provided in the paper.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    R. Tucker, Ed., ASM Handbook: Thermal Spray Technology, ASM International, Materials Park, OH, 2013

  2. 2.

    P. Fauchais, Understanding Plasma Spraying, J. Phys. D, 2004, 37(9), p R86-R108

    Article  Google Scholar 

  3. 3.

    J. Cizek, K. Khor, I. Dlouhy, In-flight Temperature and Velocity of Powder Particles of Plasma-Sprayed TiO2, J. Therm. Spray Technol. 22(8), 2013, p 1320-1327

    Article  Google Scholar 

  4. 4.

    A. Papyrin, V. Kosarev, S. Klinkov, A. Alkimov, and V. Fomin, Cold Spray Technology, Elsevier, Oxford, 2007

    Google Scholar 

  5. 5.

    F. Kroupa, Nonlinear Behavior in Compression and Tension of Thermally Sprayed Ceramic Coatings, J. Therm. Spray Technol. 16(1), 2007, p 84-95

    Article  Google Scholar 

  6. 6.

    H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater. 51(15), 2003, p 4379-4394

    Article  Google Scholar 

  7. 7.

    T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol. 18(5-6), 794-808 (2009)

    Article  Google Scholar 

  8. 8.

    T. Suhonen, T. Varis, S. Dosta, M. Torrell, and J. Guilemany, Residual Stress Development in Cold Sprayed Al, Cu and Ti Coatings, Acta Mater. 61, 2013, p 6329-6337

    Article  Google Scholar 

  9. 9.

    S. Kuroda, J. Kawakita, M. Watanabe, and H. Katanoda, Warm Spraying—A Novel Coating Process Based on High-Velocity Impact of Solid Particles, Sci. Technol. Adv. Mater. 9, 2008, p 033002

    Article  Google Scholar 

  10. 10.

    R. Ahmed, N. Faisal, S. Knupfer, A. Paradowska, M. Fitzpatrick, K. Khor, and J. Cizek, Neutron Diffraction Residual Strain Measurements in Plasma Sprayed Nanostructured Hydroxyapatite Coatings for Orthopaedic Implants, Mater .Sci .Forum 652, 2010, p 309-314

    Article  Google Scholar 

  11. 11.

    J. Cizek, O. Kovarik, J. Siegl, K. Khor, and I. Dlouhy, Influence of Plasma and Cold Spray Deposited Ti Layers on High-Cycle Fatigue Properties of Ti6Al4V Substrates, Surf. Coat. Technol. 217, 2013, p 23-33

    Article  Google Scholar 

  12. 12.

    R. Musalek, O. Kovarik, T. Skiba, P. Hausild, M. Karlik, and J. Colmenares-Angulo, Fatigue Properties of Fe-Al Intermetallic Coatings Prepared by Plasma Spraying, Intermetallics 18(7), 2010, p 1415-1418

    Article  Google Scholar 

  13. 13.

    R. Souza, M. Nascimento, H. Voorwald, and W. Pigatin, The Effect of WC-17Co Thermal Spray Coating by HVOF and Hard Chromium Electroplating on the Fatigue Life and Abrasive Wear Resistance of AISI 4340 High Strength Steel, Corros. Rev. 21(1), 2003, p 75-96

    Google Scholar 

  14. 14.

    K. Binder, J. Gottschalk, M. Kollenda, F. Gärtner, and T. Klassen, Influence of Impact Angle and Gas Temperature on Mechanical Properties of Titanium Cold Spray Deposits, J. Therm. Spray Technol. 20(1-2), 2011, p 234-242

    Article  Google Scholar 

  15. 15.

    T. Price, P. Shipway, and D. McCartney, Effect of Cold Spray Deposition of a Titanium Coating on Fatigue Behavior of a Titanium Alloy, J. Therm. Spray Technol. 15(4), 2006, p 507-512

    Article  Google Scholar 

  16. 16.

    R. Ghelichi, D. MacDonald, S. Bagherifard, H. Jahed, M. Guagliano, and B. Jodoin, Microstructure and Fatigue Behavior of Cold Spray Coated Al5052, Acta Mater. 60(19), 2012, p 6555-6561

    Article  Google Scholar 

  17. 17.

    D. Helfritsch and M. Trexler, How Operating Parameters and Powder Characteristics Affect Cold Spray Costs, North American Cold Spray Conference, 2011

  18. 18.

    H. Fukanuma, N. Ohno, B. Sun, and R. Huang, In-flight Particle Velocity Measurements with DPV-2000 in Cold Spray, Surf. Coat. Technol. 201(5), 2006, p 1935-1941

    Article  Google Scholar 

  19. 19.

    O. Kovarik, P. Hausild, J. Siegl, Z. Pala, J. Matejicek, and V. Davydov, The Influence of Plasma Sprayed Multilayers of Cr2O3 and Ni10wt.%Al on Fatigue Resistance, Surf. Coat. Technol. 251, 2014, p 143-150

    Article  Google Scholar 

  20. 20.

    E. Degarmo, J. Black, and R. Kohser, Materials and Processes in Manufacturing, 9th ed., Wiley, New York, 2003

    Google Scholar 

  21. 21.

    J. Wigren, Grit Blasting as Surface Preparation Before Plasma Spraying, Surf. Coat. Technol. 34(1), 1988, p 101-108

    Article  Google Scholar 

  22. 22.

    C. Leinenbach and D. Eifler, Fatigue and Cyclic Deformation Behaviour of Surface-Modified Titanium Alloys in Simulated Physiological Media, Biomaterials 27(8), 2006, p 1200-1208

    Article  Google Scholar 

  23. 23.

    D. Brunette, P. Tengvall, M. Textor, and P. Thomsen, Titanium in Medicine, Springer, Berlin, 2001

    Google Scholar 

  24. 24.

    International Organization for Standardization, ISO Standard 4287: Geometrical Product Specifications—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters, 1997

  25. 25.

    D. Chicot, H. Ageorges, M. Voda, G. Louis, M.B. Dhia, C. Palacio, and S. Kossman, Hardness of Thermal Sprayed Coatings: Relevance of the Scale of Measurement, Surf. Coat. Technol., 2014

  26. 26.

    H. Rietveld, Line Profiles of Neutron Powder-Diffraction Peaks for Structure Refinement, Acta Cryst. 22, 1967, p 151-152

    Article  Google Scholar 

  27. 27.

    O. Kovarik, J. Siegl, and Z. Prochazka, Fatigue Behavior of Bodies with Thermally Sprayed Metallic and Ceramic Deposits, J. Therm. Spray Technol. 17(4), 2008, p 525-532

    Article  Google Scholar 

  28. 28.

    M. Meggiolaro and J. Castro, Statistical Evaluation of Strain-Life Fatigue Crack Initiation Predictions, Int. J. Fatigue 26, 2004, p 463-476

    Article  Google Scholar 

  29. 29.

    P. Fauchais, M. Fukumoto, A. Vardelle, and M. Vardelle, Knowledge Concerning Splay Formation: An Invited Review, J. Therm. Spray Technol. 13(3), 2004, p 337-360

    Article  Google Scholar 

  30. 30.

    O. Kovarik, J. Siegl, J. Nohava, and P. Chraska, Young’s Modulus and Fatigue Behavior of Plasma-Sprayed Alumina Coatings, J. Therm. Spray Technol. 14(2), 2005, p 231-238

    Article  Google Scholar 

  31. 31.

    D. Goldbaum, J. Ajaja, R. Chromik, W. Wong, S. Yue, E. Irissou, and J. Legoux, Mechanical Behavior of Ti Cold Spray Coatings Determined by a Multi-scale Indentation Method, Mater. Sci. Eng. A 530, 2011, p 253-265

    Article  Google Scholar 

  32. 32.

    M. Mellali, A. Grimaud, A. Leger, P. Fauchais, and J. Lu, Alumina Grit Blasting Parameters for Surface Preparation in the Plasma Spraying Operation, J. Therm. Spray Technol. 6(2), 1997, p 217-227

    Article  Google Scholar 

  33. 33.

    K. Chander, M. Vashista, K. Sabiruddin, S. Paul, and P. Bandyopadhyay, Effects of Grit Blasting on Surface Properties of Steel Substrates, Mater. Des. 30(8), 2009, p 2895-2902

    Article  Google Scholar 

  34. 34.

    G. Lutjering and J. Williams, Titanium, 2nd ed., Springer, Berlin, 2007

    Google Scholar 

  35. 35.

    L. Zhu, J. He, D. Yan, L. Xiao, Y. Dong, J. Zhang, and H. Liao, Synthesis and Microstructure Observation of Titanium Carbonitride Nanostructured Coatings Using Reactive Plasma Spraying in Atmosphere, Appl. Surf. Sci. 257(20), 2011, p 8722-8727

    Article  Google Scholar 

  36. 36.

    L. Xiao, D. Yan, J. He, L. Zhu, Y. Dong, J. Zhang, and X. Li, Nanostructured TiN Coating Prepared by Reactive Plasma Spraying in Atmosphere, Appl. Surf. Sci. 253(18), 2007, p 7535-7539

    Article  Google Scholar 

  37. 37.

    A. Kobayashi, Formation of TiN Coatings by Gas Tunnel Type Plasma Reactive Spraying, Surf. Coat. Technol. 132(2-3), 2000, p 152-157

    Article  Google Scholar 

  38. 38.

    M. de Strycker, L. Schueremans, W. van Paepegem, and D. Debruyne, Measuring the Thermal Expansion Coefficient of Tubular Steel Specimens with Digital Image Correlation Techniques, Opt. Lasers Eng. 48, 2010, p 978-986

    Article  Google Scholar 

  39. 39.

    D. Hummer, P. Heaney, and J. Post, Thermal Expansion of Anatase and Rutile Between 300 and 575 K Using Synchrotron Powder x-ray Diffraction, Powder Differ. 22, 2007, p 352-357

    Article  Google Scholar 

  40. 40.

    R. Musalek, J. Matejicek, M. Vilemova, and O. Kovarik, Non-linear Mechanical Behavior of Plasma Sprayed Alumina Under Mechanical and Thermal Loading, J. Therm. Spray Technol. 19(1-2), 2010, p 422-428

    Article  Google Scholar 

  41. 41.

    Y. Zou, “Microstructural studies of cold sprayed pure nickel, copper and aluminum coatings,” Master’s thesis, McGill University, 2010

Download references

Acknowledgment

The present work has been carried out in NETME Centre, and the authors acknowledge the financial support of European Regional Development Fund under the Operational Programme Research and Development for Innovation. The presented results have been obtained in Netme Centre Plus (LO1202) project co-funded by the Ministry of Education, Youth and Sports in the support programme “National Sustainability Programme I”. The support of Czech Science Foundation projects GACR 13-35890S (sample preparation and evaluation) and GACR 108/12/1872 (fatigue testing) is further acknowledged. The main author would like to thank Michal Cizek for providing the schematics of the fatigue test device.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Cizek.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cizek, J., Matejkova, M., Dlouhy, I. et al. Influence of Cold-Sprayed, Warm-Sprayed, and Plasma-Sprayed Layers Deposition on Fatigue Properties of Steel Specimens. J Therm Spray Tech 24, 758–768 (2015). https://doi.org/10.1007/s11666-015-0240-4

Download citation

Keywords

  • cold spray
  • fatigue
  • grit-blast
  • plasma spray
  • residual stresses
  • titanium
  • warm spray