Skip to main content
Log in

Effect of Prior Cold Deformation and Nitriding Conditions on Microstructure and Mechanical Properties of Plasma Nitrided IF Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of prior cold deformation and nitriding parameters on the kinetics and mechanism of plasma nitriding and the resultant hardness, wear and corrosion properties of automotive-grade interstitial-free (IF) steel has been investigated. Following controlled prior cold deformation (uniaxial rolling), plasma nitriding was carried out in pulsed direct current glow discharge mode with applied voltage, current, temperature and time varied in the range 540 to 710 V, 3 to 6 A, 350 to 480 °C and 1 to 4 hours, respectively. The phases formed after nitriding were found to be mostly γ-Fe4N with a small volume fraction of Fe3N embedded in a ferrite matrix. Prior cold deformation increases the kinetics of the nitride formation. The volume fraction of nitride phases increased with an increase in nitriding temperature and time. Detailed characterization suggested that 80 pct cold deformation followed by plasma nitriding led to significant improvement in hardness and wear resistance of IF steel, particularly when nitrided at 480 °C for 4 hours. Moreover, plasma nitriding also enhanced the corrosion resistance of IF steel, enhancement being directly related to the nitride volume fraction at the surface. Hence, it was concluded that prior cold deformation was effective in enhancing the kinetics of plasma nitriding and in turn surface hardness and resistance to wear and corrosion of IF steel, which otherwise possess a fairly poor bulk strength and does not respond to usual bulk/surface-hardening treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. [1] R. Rana, W. Bleck, S.B. Singh and O.N. Mohanty: Mater. Lett., 2007, vol. 61, pp. 2919–2922.

    Article  Google Scholar 

  2. H.W. McQuaid and W.J. Ketcham: reprinted from Trans. ASST, Vol 14, 1928, Source Book on Nitriding, P.M. Unterweiser and A.G. Gray, Ed., American Society for Metals, 1977, pp. 1–25.

  3. C.K. Jones, D.J. Sturges, and S.W. Martin: reprinted from Metal Prog., Dec 1973, Source Book on Nitriding, P.M. Unterweiser and A.G. Gray, Ed., American Society for Metals, 1977, pp. 186–87.

  4. [4] C. Blawert, B.L. Mordike, G.A. Collins, R. Hutchings, K.T. Short and J. Tendys: Surf. Coat. Technol., 1996, vol. 83, pp. 228–234.

    Article  Google Scholar 

  5. [5] O.V. Zaitsev, V.G. Kaplun, S.V. Ivashchuk and P.E. Filyushin: Met. Sci. Heat Treat., 1990, vol. 32, pp. 650–655.

    Article  Google Scholar 

  6. [6] T. Jun, O. Yuusuke, M. Hiroshi, K. Hideyudi, K. Shiomi, T. Imao: J. Mater. Sci., 1986, vol. 21, pp. 2493–2496.

    Article  Google Scholar 

  7. [7] M.K. Lei and Z.L. Zhang: Surf. Coat. Technol., 1997, vol. 91, pp. 25–31.

    Article  Google Scholar 

  8. [8] U. Figueroa, J. Oseguera, P.S. Schabes-Retchkiman: Surf. Coat. Technol., 1996, vol. 86–87, pp. 728–734.

    Article  Google Scholar 

  9. [9] K.R.M. Rao, S. Mukherjee, P.M. Raole and I. Manna: Surf. Coat. Technol., 2002, vol. 150, pp. 80–87.

    Article  Google Scholar 

  10. A. Basu, J. Dutta-Majumdar, J. Alphonsa, S. Mukherjee and I. Manna: Mater. Lett., 2008, vol. 62, pp. 3117–3120.

    Article  Google Scholar 

  11. [11] Y.Z. Shen, K.H. Oh and D.N. Lee: Scripta Mater., 2005, vol. 53, pp. 1345–1349.

    Article  Google Scholar 

  12. [12] Y.Z. Shen, K.H. Oh and D.N. Lee: ISIJ Int., 2006, vol. 46, pp. 111–120.

    Article  Google Scholar 

  13. J.M. Obrien and D. Goodman: ASM Handbook, 4th edn. ASM International, Materials Park; 1997.

    Google Scholar 

  14. [14] W. Ensinger, A. Schroer and G.K. Wolf: Surf. Coat. Technol., 1992, vol. 51, pp. 217–221.

    Article  Google Scholar 

  15. [15] W. Ensinger, A. Schroer and G.K. Wolf: Nucl. Instr. Meth. B, 1993, vol. 80-81, pp. 445–454.

    Article  Google Scholar 

  16. I. Manna and J. Dutta-Majumdar: J. Mater. Sci. Lett., 1993, vol. 12, pp. 920–922.

    Article  Google Scholar 

  17. [17] J. Pak, W. Lin, K. Wang, A. Chinchore, M. Shi, D.C. Ingram, and A.R. Smitha: J. Vac. Sci. Technol. A, 2010, vol. 28, pp. 536–540.

    Article  Google Scholar 

  18. [18] K.R.M. Rao, S. Mukherjee, S. K. Roy and I. Manna: Inst. Mater. Miner. Min., 2008, vol. 24, pp. 4–7.

    Google Scholar 

  19. [19] F.H. Chung: J. Appl. Crystallogr., 1974, vol. 7, pp. 519–525.

    Article  Google Scholar 

  20. [20] F.M. El-Hossary, N.Z. Negm, S.M. Khalil and M. Raaif: Appl. Surf. Sci., 2005, vol. 239, pp. 142–153.

    Article  Google Scholar 

  21. V.I. Dimitrov, J. Dhaen, G. Knuyt, C. Quaeyhaegens and K.M. Stals: Surf. Coat. Technol., 1998, vol. 99, pp. 234–241.

    Article  Google Scholar 

  22. [22] J.D. Fast and M.B. Verrijp: J. Iron Steel Inst., 1954, vol. 176, pp. 24–27.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the partial financial support provided for this research work by the Department of Science and Technology, New Delhi, Government of India (Project code: PAI), J. C. Bose fellowship support (to I. Manna) and Board of Research for Nuclear Science, Mumbai (Project: EBW) and Alexander von Humboldt Foundation (to J. Dutta Majumdar).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Manna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 14, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, M.K., Majumdar, J.D., Mukherjee, S. et al. Effect of Prior Cold Deformation and Nitriding Conditions on Microstructure and Mechanical Properties of Plasma Nitrided IF Steel. Metall Mater Trans A 50, 4319–4330 (2019). https://doi.org/10.1007/s11661-019-05351-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05351-5

Navigation