Skip to main content
Log in

Thermally Sprayed Y2O3-Al2O3-SiO2 Coatings for High-Temperature Protection of SiC Ceramics

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The suitability of certain glass compositions in the Y2O3-Al2O3-SiO2 (YAS) system as protecting coatings for silicon carbide components has been prospected. One particular YAS composition was formulated considering its glass formation ability and subsequent crystallization during service. Round-shaped and homogeneous granules of the selected composition were prepared by spray drying the corresponding homogeneous oxide powder mixture. Glassy coatings (197 µm thick) were obtained by oxyacetylene flame spraying the YAS granules over SiC substrates, previously grit blasted and coated with a Si bond layer (56 µm thick). Bulk glass of the same composition was produced by the conventional glass casting method and used as reference material for comparative evaluation of the characteristic glass transition temperatures, crystallization behavior, mechanical, and thermal coating properties. The mechanical properties and thermal conductivity of the coating were lower than those of the bulk glass owing to its lower density, higher porosity, and characteristic lamellar structure. The crystallization of both bulk glass and coating occurred during isothermal treatments in air at 1100-1350 °C. Preliminary data on ablation tests at 900 °C using the oxyacetylene gun indicated that the YAS glassy coating was a viable protective shield for the SiC substrate during 150 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Behrens and M. Muller, Technologies for Thermal Protection Systems Applied on Re-usable Launcher, Acta Astronaut., 2004, 55, p 529-536

    Article  Google Scholar 

  2. L. Weiming and D.D.L. Chung, Oxidation Protection of Carbon Materials by Acid Phosphate Impregnation, Carbon, 2002, 40, p 1249-1254

    Article  Google Scholar 

  3. Y.-C. Zhu, S. Ohtani, Y. Sato, and N. Iwamoto, The Improvement in Oxidation Resistance of CVD-SiC Coated C/C Composites by Silicon Infiltration Pretreatment, Carbon, 1998, 36, p 929-935

    Article  Google Scholar 

  4. Y.-C. Zhu, S. Ohtani, Y. Sato, and N. Iwamoto, Influence of Boron Ion Implantation on the Oxidation Behavior of CVD-SiC Coated Carbon-Carbon Composites, Carbon, 2000, 38, p 501-507

    Article  Google Scholar 

  5. F. Smeacetto, M. Ferraris, and M. Salvo, Multilayer Coating with Self-sealing Properties for Carbon-Carbon Composites, Carbon, 2003, 41, p 2105-2111

    Article  Google Scholar 

  6. F. Smeacetto, M. Ferraris, M. Salvo, S.D. Ellacott, A. Ahmed, R.D. Rawlings, and A.R. Boccaccini, Protective Coatings for Carbon Bonded Carbon Fibre Composites, Ceram. Int., 2008, 34, p 1297-1301

    Article  Google Scholar 

  7. M. Guo, K. Shen, and Y. Zheng, Multilayered Coatings for Protecting Carbon-Carbon Composites from Oxidation, Carbon, 1995, 33, p 449-453

    Article  Google Scholar 

  8. M. Aparicio and A. Durán, Yttrium Silicate Coatings for Oxidation Protection of Carbon-Cilicon Carbide Composites, J. Am. Ceram. Soc., 2000, 83, p 1351-1355

    Article  Google Scholar 

  9. Y. Liu, L. Zhang, L. Cheng, W. Yang, W. Zhang, and Y. Xu, Preparation and Oxidation Protection of CVD SiC/a-BC/SiC Coatings for 3D C/SiC Composites, Corros. Sci., 2009, 51, p 820-826

    Article  Google Scholar 

  10. K.N. Lee, D.S. Fox, and N.P. Bansal, Rare Earth Silicate Environmental Barrier Coatings for SiC/SiC Composites and Si3N4 Ceramics, J. Eur. Ceram. Soc., 2005, 25, p 1705-1715

    Article  Google Scholar 

  11. K.N. Lee, D.S. Fox, J.I. Eldridge, D. Zhu, R.C. Robinson, N.P. Bansal, and R.A. Miller, Upper Temperature Limit of Environmental Barrier Coatings Based on Mullite and BSAS, J. Am. Ceram. Soc., 2003, 86, p 1299-1306

    Article  Google Scholar 

  12. C.V. Cojocaru, D. Lévesque, C. Moreau, and R.S. Lima, Performance of Thermally Sprayed Si/Mullite/BSAS Environmental Barrier Coatings Exposed to Thermal Cycling in Water Vapor Environment, Surf. Coat. Technol., 2013, 216, p 215-223

    Article  Google Scholar 

  13. J. Mesquita-Guimarães, E. Garcia, P. Miranzo, M.I. Osendi, C.V. Cojocaru, and R.S. Lima, Mullite-YSZ Multilayered Environmental Barrier Coatings Tested in Cycling Conditions Under Water Vapor Atmosphere, Surf. Coat. Technol., 2012, 209, p 103-109

    Article  Google Scholar 

  14. M.A. Sainz, M.I. Osendi, and P. Miranzo, Protective Si-Al-O-Y Glass Coatings on Stainless Steel in Situ Prepared by Combustion Flame Spraying, Surf. Coat. Technol., 2008, 202, p 1712-1717

    Article  Google Scholar 

  15. L. Wu, G. Liu, J. Li, B. He, Z. Yang, and Y. Chen, Dependence of Glass-Forming Ability on Starting Compositions in Y2O3-Al2O3-SiO2 System, Ceram. Silik, 2011, 55, p 228-231

    Google Scholar 

  16. H. Mao, M. Selleby, and O. Fabrichnaya, Thermodynamic Reassessment of the Y2O3-Al2O3-SiO2 System and its Subsystems, CALPAHD, 2008, 32, p 399-412

    Article  Google Scholar 

  17. U. Kolitsch, H.J. Seifert, T. Ludwig, and F. Aldinger, Phase Equilbria and Crystal Chemistry in the Y2O3-Al2O3-SiO2 System, J. Mater. Res., 1999, 14(2), p 447-455

    Article  Google Scholar 

  18. M.J. Hyatt and D.E. Day, Glass Properties in the Yttria-Aluminas-Silica System, J. Am. Ceram. Soc., 1987, 70, p C283-C287

    Article  Google Scholar 

  19. J.E. Shelby, S.M. Minton, C.E. Lord, and M.R. Tuzzolo, Formation and Properties of Yttrium Aluminosilicate Glasses, Phys. Chem. Glasses, 1992, 33, p 93-98

    Google Scholar 

  20. K. Morita, A. Umezawa, S. Yamato, and A. Makishima, Surface-Roughness of Yttria-Containing Aluminosilicate Glass-Ceramics as Indicative of Their Machinability, J. Am. Ceram. Soc., 1993, 76, p 1861-1864

    Article  Google Scholar 

  21. E. Garcia, P. Miranzo, and M.I. Osendi, The Prospect of Y2SiO5-Based Materials as Protective Layer in Environmental Barrier Coatings, J. Therm. Spray Technol., 2013, 22, p 680-689

    Article  Google Scholar 

  22. H.L. Schick, A Thermodynamic Analysis of the High-Temperature Vaporization Properties of Silica, Chem. Rev., 1960, 60, p 331-362

    Article  Google Scholar 

  23. E. García, J. Mesquita-Guimarães, P. Miranzo, and M.I. Osendi, Porous Mullite and Mullite-ZrO2 Granules for Thermal Spraying Applications, Surf. Coat. Technol., 2011, 205, p 4304-4311

    Article  Google Scholar 

  24. H. Scholze, Influence of the Viscosity and Surface Tension on Hot-Stage Microscopy Measurements on Glasses, Ver. Dtsch. Keram. Ges., 1962, 391, p 63-68

    Google Scholar 

  25. H. Vogel, Temperature Dependence of Viscosity of Melts, Physik Z, 1921, 22, p 645-646

    Google Scholar 

  26. G.S. Fulcher, Analysis of Recent Measurements of the Viscosity of Glasses, J. Am. Ceram. Soc., 1925, 8, p 339-355

    Article  Google Scholar 

  27. G. Tammann and W. Hesse, Temperature Dependence of Viscosity of Melted Supercooled Liquids, Z. Anorg. Chem., 1926, 156, p 245-247

    Article  Google Scholar 

  28. W.C. Oliver and G.M. Pharr, Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564-1580

    Article  Google Scholar 

  29. A. Roine, Outokumpu HSC Chemistry for Windows V. 5.11. Outokumpu Research, Pori 2002

  30. J. Mesquita-Guimarães, E. García, M.I. Osendi, O. Sevecek, and R. Bermejo, Effect of Aging on the Onset of Cracks due to Redistribution of Residual Stresses in Functionally Graded Environmental Barrier Coatings of Mullite/ZrO2, Composites B, 2014, 61, p 199-205

    Article  Google Scholar 

  31. M.A. Sainz, P. Miranzo, and M.I. Osendi, Sintering Behaviour and Properties of YAlSiO and YAlSiON Glass-Ceramics, Ceram. Int., 2011, 37, p 1485-1492

    Article  Google Scholar 

  32. K. Liddell and D.P. Thompson, X-ray Diffraction Data for Yttrium Silicates, Br. Ceram Trans. J., 1986, 85, p 17-22

    Google Scholar 

  33. J. Ito and H. Johnson, Synthesis and Study of Yttrialite, Am. Mineral., 1968, 53, p 1940-1952

    Google Scholar 

  34. J. Gröbner, “Constitution Calculations in the System Y-Al-Si-C-O,” Ph.D. Thesis, University of Stuttgart, 1994

  35. H.B. Guo, R. Vassen, and D. Stöver, Atmospheric Plasma Sprayed Thick Thermal Barrier Coatings with High Segmentation Crack Density, Surf. Coat. Technol., 2004, 186, p 353-363

    Article  Google Scholar 

  36. L. Bianchi, A.C. Leger, M. Vardelle, A. Vardelle, and P. Fauchais, Splat Formation and Cooling of Plasma-Sprayed Zirconia, Thin Solid Films, 1997, 305, p 35-47

    Article  Google Scholar 

  37. A.A. El-Kheshen, F.A. Khaliafa, E.A. Saad, and R.L. Elwan, Effect of Al2O3 Addition on Bioactivity, Thermal and Mechanical Properties of Some Bioactive Glasses, Ceram. Int., 2008, 34, p 1667-1673

    Article  Google Scholar 

  38. C. Maxwell, A Treatise on Electricity and Magnetism, Clarendon, Oxford, 1904

    Google Scholar 

  39. E. Garcia, P. Miranzo, R. Soltani, and T.W. Coyle, Microstructure and Thermal Behavior of Thermal Barrier Coatings, J. Therm Spray Technol., 2008, 17, p 478-485

    Article  Google Scholar 

  40. E. Garcia, J. Mesquita-Guimarães, M.I. Osendi, and P. Miranzo, Thermal Conductivity in Mullite/ZrO2 Composite Coatings, Ceram. Int., 2010, 36, p 1609-1614

    Article  Google Scholar 

  41. D. Zhu, N.P. Bansal, K.N. Lee, and R.A. Miller, Thermal Conductivity of Ceramic Thermal Barrier and Environmental Barrier Coating Materials. NASA TM-2001-211122, NASA Lewis Research Center, Cleveland, OH, 2001

  42. Z.Q. Sun, Y.C. Zhou, and M.S. Li, Thermal Properties of Single-Phase Y2SiO5, J. Eur. Ceram. Soc., 2009, 29, p 551-557

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under project IPT-2012-0800-420000. Dr. E. Garcia acknowledges the financial support of the Ramon y Cajal Program of the MINECO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. García.

Additional information

This article is an invited paper selected from presentations at the 2014 International Thermal Spray Conference, held on May 21-23, 2014, in Barcelona, Spain, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, E., Nistal, A., Martín de la Escalera, F. et al. Thermally Sprayed Y2O3-Al2O3-SiO2 Coatings for High-Temperature Protection of SiC Ceramics. J Therm Spray Tech 24, 185–193 (2015). https://doi.org/10.1007/s11666-014-0178-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0178-y

Keywords

Navigation