Skip to main content
Log in

Influence of “Island-Like” Oxides in the Bond-Coat on the Stress and Failure Patterns of the Thermal-Barrier Coatings Fabricated by Atmospheric Plasma Spraying During Long-Term High Temperature Oxidation

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Thermal-barrier coatings (TBCs) are very important ceramic-coating materials due to their excellent performance at high temperature. The inner zone of the bond-coat is often easily endured oxidized (internal oxidation) in the process of thermal spraying and the long-time exposure to the high temperature, and the “island-like” oxides can be formed. Especially, when the bond-coat was fabricated by atmospheric plasma spraying (APS), this trend is more evident. In this paper, the stress distribution around the thermally grown oxide (TGO) has been calculated by the finite element method when the “island-like” oxides have been considered. The simulation results indicate that the maximum tensile stress and compressive stress existed in the TGO, and the existence of the “island-like” oxides will further decrease the maximum tensile stress level in the TGO. While the “island-like” oxides in the bond-coat will decrease the effective thickness of the TGO at the metallic layer/ceramic layer interface due to the oxidation of the metallic elements in the bond-coat. The crack propagation equation has been established and the failure mechanism of the TBC due to the formation and growth of the TGO has also been discussed in detail. The lifetime of the TBCs which have experienced high temperature oxidation has been predicted and the theoretical results agreed well with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296, p 280-284

    Article  Google Scholar 

  2. R.A. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, J. Therm. Spray Technol., 1997, 6, p 35-42

    Article  Google Scholar 

  3. A.G. Evans, D.R. Mumm, J.W. Hutehinson, G.H. Meier, and F.S. Pettit, Mechanisms Controlling the Durability of Thermal Barrier Coatings, Prog. Mater Sci., 2001, 46, p 505-553

    Article  Google Scholar 

  4. A.G. Evans, M.Y. He, and J. Hutchinson, Mechanics-Based Scaling Laws for the Durability of Thermal Barrier Coatings, Prog. Mater Sci., 2001, 46, p 249-271

    Article  Google Scholar 

  5. S.C. Joshi and H.W. Ng, Optimizing Functionally Graded Nickel-Zirconia Coating Profiles for Thermal Stress Relaxation, Simul. Model. Pract. Th., 2011, 19, p 586-598

    Article  Google Scholar 

  6. S. Uwe, L. Christoph, F. Klaus, P. Manfred, S.B. Bilge, and L. Odile, Some Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings, Aerosp. Sci. Technol., 2003, 7, p 73-80

    Article  Google Scholar 

  7. E.P. Busso, L. Wright, H.E. Evans, L.N. Mccartney, S.R.J. Saunders, S. Osgerby, and J. Nunn, A Physics-Based Life Prediction Methodology for Thermal Barrier Coating Systems, Acta Mater., 2007, 55, p 1491-1503

    Article  Google Scholar 

  8. R.A. Miller, Current Status of Thermal Barrier Coatings: An Overview, Surf. Coat. Technol., 1987, 30, p 1-11

    Article  Google Scholar 

  9. D.M. Zhu and R.A. Miller, Thermal-Barrier Coatings for Advanced Gas-Turbine Engines, MRS Bull., 2000, 25, p 43-47

    Article  Google Scholar 

  10. C.H. Liebert and R.A. Miller, Ceramic Thermal Barrier Coatings, Ind. Eng. Chem. Prod. Res. Dev., 1984, 23, p 344-349

    Article  Google Scholar 

  11. J.I. Eldridge, D.M. Zhu, and R.A. Miller, Mesoscopic Nonlinear Elastic Modulus of Thermal Barrier Coatings Determined by Cylindrical Punch Indentation, J. Am. Ceram. Soc., 2001, 84, p 2737-2739

    Article  Google Scholar 

  12. S.R. Choi, D.M. Zhu, and R.A. Miller, Effect of Sintering on Mechanical Properties of Plasma-Sprayed Zirconia-Based Thermal Barrier Coatings, J. Am. Ceram. Soc., 2005, 88, p 2859-2867

    Article  Google Scholar 

  13. D.M. Zhu and R.A. Miller, Development of Advanced Low Conductivity Thermal Barrier Coatings, Int. J. Appl. Ceram. Technol., 2004, 1, p p86-p94

    Article  Google Scholar 

  14. H.B. Guo, D.Q. Li, H. Peng, Y.J. Cui, and S.K. Gong, High-Temperature Oxidation and Hot-Corrosion Behaviour of EB-PVD β-NiAlDy Coatings, Corros. Sci., 2011, 53, p 1050-1059

    Article  Google Scholar 

  15. Z.H. Xu, L.M. He, R.D. Mu, S.M. He, G.H. Huang, and X.Q. Cao, Hot Corrosion Behavior of Rare Earth Zirconates and Yttria Partially Stabilized Zirconia Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 204, p 3652-3661

    Article  Google Scholar 

  16. H.B. Zhao, M.R. Begley, A. Heuer, R.S. Moshtaghin, and H.N.G. Wadley, Reaction, Transformation and Delamination of Samarium Zirconate Thermal Barrier Coatings, Surf. Coat. Technol., 2011, 205, p 4355-4365

    Article  Google Scholar 

  17. D.E. Wolfe, J. Singh, R.A. Miller, J.I. Eldridge, and D.M. Zhu, Tailored Microstructure of EB-PVD 8YSZ Thermal Barrier Coatings with Low Thermal Conductivity and High Thermal Reflectivity for Turbine Applications, Surf. Coat. Technol., 2005, 190, p 132-149

    Article  Google Scholar 

  18. J. Singh, D.E. Wolfe, R.A. Miller, J.I. Eldridge, and D.M. Zhu, Tailored Microstructure of Zirconia and Hafnia-Based Thermal Barrier Coatings with Low Thermal Conductivity and High Hemispherical Reflectance by EB-PVD, J. Mater. Sci., 2004, 39, p 1975-1985

    Article  Google Scholar 

  19. D.M. Zhu, R.A. Miller, B.A. Nagaraj, and R.W. Bruce, Thermal Conductivity of EB-PVD Thermal Barrier Coatings Evaluated by a Steady-State Laser Heat Flux Technique, Surf. Coat. Technol., 2001, 138, p 1-8

    Article  Google Scholar 

  20. G.C. Chang and W. Phucharoen, Behavior of Thermal Barrier Coatings for Advanced Gas Turbine Blades, Surf. Coat. Technol., 1987, 30, p 13-28

    Article  Google Scholar 

  21. D.M. Zhu, S.R. Choi, and R.A. Miller, Development and Thermal Fatigue Testing of Ceramic Thermal Barrier Coatings, Surf. Coat. Technol., 2004, 188-189, p 146-152

    Article  Google Scholar 

  22. Y. He, K.N. Lee, S. Tewari, and R.A. Miller, Development of Refractory Silicate-Yttria-Stabilized Zirconia Dual-Layer Thermal Barrier Coatings, J. Therm. Spray Technol., 2000, 9, p 59-67

    Article  Google Scholar 

  23. D.M. Zhu and R.A. Miller, Investigation of Thermal High Cycle and Low Cycle Fatigue Mechanisms of Thick Thermal Barrier Coatings, Mater. Sci. Eng., A, 1998, 245, p 212-223

    Article  Google Scholar 

  24. M.J. Kelly, D.E. Wolfe, and J. Singh, Thermal Barrier Coatings Design with Increased Reflectivity and Lower Thermal Conductivity for High-Temperature Turbine Applications, Int. J. Appl. Ceram. Technol., 2006, 3, p 81-93

    Article  Google Scholar 

  25. D.M. Zhu and R.A. Miller, Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings under High Heat Flux Conditions, J. Therm. Spray Technol., 2000, 9, p 175-181

    Article  Google Scholar 

  26. C.C. Berndt and R.A. Miller, Failure Analysis of Plasma-Sprayed Thermal Barrier Coatings, Thin Solid Films, 1984, 119, p 173-184

    Article  Google Scholar 

  27. R.A. Miller and C.C. Berndt, Performance of Thermal Barrier Coatings in High Heat Flux Environments, Thin Solid Films, 1984, 119, p 195-202

    Article  Google Scholar 

  28. R.A. Miller and C.E. Lowell, Failure Mechanisms of Thermal Barrier Coatings Exposed to Elevated Temperatures, Thin Solid Films, 1982, 95, p 265-273

    Article  Google Scholar 

  29. P.E. Hodge, R.A. Miller, and M.A. Gedwill, Evaluation of the Hot Corrosion Behavior of Thermal Barrier Coatings, Thin Solid Films, 1980, 73, p 447-453

    Article  Google Scholar 

  30. J.A. Nesbitt, D.M. Zhu, R.A. Miller, and C.A. Barrett, Failure Morphologies of Cyclically Oxidized ZrO2-Based Thermal Barrier Coatings, Mater. High Temp., 2003, 20, p 507-517

    Article  Google Scholar 

  31. S.R. Choi, D. Zhu, and R.A. Miller, Fracture Behavior Under Mixed-Mode Loading of Ceramic Plasma-Sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures, Eng. Fract. Mech., 2005, 72, p 2144-2158

    Article  Google Scholar 

  32. D.M. Zhu and R.A. Miller, Investigation of Thermal Fatigue Behavior of Thermal Barrier Coating Systems, Surf. Coat. Technol., 1997, 94-95, p 94-101

    Article  Google Scholar 

  33. O. Trunova, T. Beck, R. Herzog, R.W. Steinbrech, and L. Singheiser, Damage Mechanisms and Lifetime Behavior of Plasma Sprayed Thermal Barrier Coating Systems for Gas Turbines-Part I: Experiments, Surf. Coat. Technol., 2008, 202, p 5027-5032

    Article  Google Scholar 

  34. T. Beck, R. Herzog, O. Trunova, M. Offermann, R.W. Steinbrech, and L. Singheiser, Damage Mechanisms and Lifetime Behavior of Plasma-Sprayed Thermal Barrier Coating Systems for Gas Turbines-Part II: Modeling, Surf. Coat. Technol., 2008, 202, p 5901-5908

    Article  Google Scholar 

  35. R. Vaßen, G. Kerkhoff, and D. Stöver, Development of a Micromechanical Life Prediction Model for Plasma Sprayed Thermal Barrier Coatings, Mater. Sci. Eng., A, 2001, 303, p 100-109

    Article  Google Scholar 

  36. P. Robin, F. Gitzhofer, P. Fauchais, and M. Boulos, Remaining Fatigue Life Assessment of Plasma Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2010, 19, p 911-920

    Article  Google Scholar 

  37. W.J. Brindley and R.A. Miller, Thermal Barrier Coating Life and Isothermal Oxidation of Low-Pressure Plasma-Sprayed Bond Coat Alloys, Surf. Coat. Technol., 1990, 43-44, p 446-457

    Article  Google Scholar 

  38. G.C. Chang, W. Phucharoen, and R.A. Miller, Finite Element Thermal Stress Solutions for Thermal Barrier Coatings, Surf. Coat. Technol., 1987, 32, p 307-325

    Article  Google Scholar 

  39. D.M. Zhu, J.A. Nesbitt, C.A. Barrett, T.R. McCue, and R.A. Miller, Furnace Cyclic Oxidation Behavior of Multicomponent Low Conductivity Thermal Barrier Coatings, J. Therm. Spray Technol., 2004, 13, p 84-92

    Article  Google Scholar 

  40. A.M. Karlsson, J.W. Hutchinson, and A.G. Evans, A Fundamental Model of Cyclic Instabilities in Thermal Barrier Systems, J. Mech. Phys. Solids, 2002, 50, p 1565-1589

    Article  Google Scholar 

  41. E.P. Busso, J. Lin, S. Sakurai, and M. Nakayama, A Mechanistic Study of Oxidation-Induced Degradation in a Plasma-Sprayed Thermal Barrier Coating System: Part I: Model Formulation, Acta Mater., 2001, 49, p 1515-1528

    Article  Google Scholar 

  42. D.R. Mumm, A.G. Evans, and I.T. Spitsberg, Characterization of a Cyclic Displacement Instability for a Thermally Grown Oxide in a Thermal Barrier System, Acta Mater., 2001, 49, p 2329-2340

    Article  Google Scholar 

  43. T.S. Hille, T.J. Nijdam, A.S.J. Suiker, S. Turteltaub, and W.G. Sloof, Damage Growth Triggered by Interface Irregularities in Thermal Barrier Coatings, Acta Mater., 2009, 57, p 2624-2630

    Article  Google Scholar 

  44. Z.H. Xu, R.D. Mu, L.M. He, and X.Q. Cao, Effect of Diffusion Barrier on the High-Temperature Oxidation Behavior of Thermal Barrier Coatings, J Alloys Compd., 2008, 466, p 471-478

    Article  Google Scholar 

  45. M.R. Far, J. Absi, G. Mariaux, and S. Shahidi, Effect of Residual Stresses and Prediction of Possible Failure Mechanisms on Thermal Barrier Coating System by Finite Element Method, J. Therm. Spray Technol., 2010, 19, p 1054-1061

    Article  Google Scholar 

  46. V.K. Tolpygo, D.R. Clarke, and K.S. Murphy, Evaluation of Interface Degradation During Cyclic Oxidation of EB-PVD Thermal Barrier Coatings and Correlation with TGO Luminescence, Surf. Coat. Technol., 2004, 188-189, p 62-70

    Article  Google Scholar 

  47. H.B. Guo, L.D. Sun, H.F. Li, and S.K. Gong, High Temperature Oxidation Behavior of Hafnium Modified NiAl Bond Coat in EB-PVD Thermal Barrier Coating System, Thin Solid Films, 2008, 516, p 5732-5735

    Article  Google Scholar 

  48. W.O. Soboyejo, P. Mensah, R. Diwan, J. Crowe, and S. Akwaboa, High Temperature Oxidation Interfacial Growth Kinetics in YSZ Thermal Barrier Coatings with Bond Coatings of NiCoCrAlY with 0.25% Hf, Mater. Sci. Eng., A, 2011, 528, p 2223-2230

    Article  Google Scholar 

  49. T.S. Hille, S. Turteltaub, and A.S.J. Suiker, Oxide Growth and Damage Evolution in Thermal Barrier Coatings, Eng. Fract. Mech., 2011, 78, p 2139-2152

    Article  Google Scholar 

  50. H. Bhatnagar, S. Ghosh, and M.E. Walter, Parametric Studies of Failure Mechanisms in Elastic EB-PVD Thermal Barrier Coatings Using FEM, Int. J. Solids Struct., 2006, 43, p 4384-4406

    Article  Google Scholar 

  51. W.R. Chen, X. Wu, B.R. Marple, D.R. Nagy, and P.C. Patnaik, TGO Growth Behaviour in TBCs with APS and HVOF Bond Coats, Surf. Coat. Technol., 2008, 202, p 2677-2683

    Article  Google Scholar 

  52. F.F. Xu, J.H. Yu, X.L. Mou, L.L. Zhang, and S.Y. Tao, Structures and Morphology of the Ordered Domains in Sm2Zr2O7 Coatings, Chem. Phys. Lett., 2010, 492, p 235-240

    Article  Google Scholar 

  53. Z.H. Xu, L.M. He, R.D. Mu, S.M. He, G.H. Huang, and X.Q. Cao, Double-Ceramic-Layer Thermal Barrier Coatings Based on La2(Zr0.7Ce0.3)2O7/La2Ce2O7 Deposited by Electron Beam-Physical Vapor Deposition, Appl. Surf. Sci., 2010, 256, p 3661-3668

    Article  Google Scholar 

  54. R. Vassen, X.Q. Cao, F. Tietz, D. Basu, and D. Stöver, Zirconates as New Materials for Thermal Barrier Coatings, J. Am. Ceram. Soc., 2000, 83, p 2023-2028

    Article  Google Scholar 

  55. R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack, and D. Stöver, Overview on Advanced Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205, p 938-942

    Article  Google Scholar 

  56. L. Wang, Y. Wang, X.G. Sun, J.Q. He, Z.Y. Pan, and L.L. Yu, Preparation and Characterization of Nanostructured La2Zr2O7 Feedstock used for Plasma Spraying, Powder Technol., 2011, 212, p 267-277

    Article  Google Scholar 

  57. R.A. Miller, Oxidation-Based Model for Thermal Barrier Coating Life, J. Am. Ceram. Soc., 1984, 67, p 517-521

    Article  Google Scholar 

  58. ANSYS Inc.Release13.0. Documentation for ANSYS

  59. M.R. Far, J. Absi, S. Shahidi, and G. Mariaux, Impact of the Non-homogenous Temperature Distribution and the Coatings Process Modelling on the Thermal Barrier Coatings System, Mater. Des., 2011, 32, p 728-735

    Article  Google Scholar 

  60. F. Tang and J.M. Schoenung, Local Accumulation of Thermally Grown Oxide in Plasma-Sprayed Thermal Barrier Coatings with Rough Top-Coat/Bond-Coat Interfaces, Scr. Mater., 2005, 52, p 905-909

    Article  Google Scholar 

  61. K. Sfar, J. Aktaa, and D. Munz, Numerical Investigation of Residual Stress Fields and Crack Behavior in TBC Systems, Mater. Sci. Eng., A, 2002, 333, p 351-360

    Article  Google Scholar 

  62. M.R. Far, J. Absi, G. Mariaux, and F. Dubois, Simulation of the Effect of Material Properties and Interface Roughness on the Stress Distribution in Thermal Barrier Coatings Using Finite Element Method, Mater. Des., 2010, 31, p 772-781

    Article  Google Scholar 

  63. C. Che, G.Q. Wu, H.Y. Qi, Z. Huang, and X.G. Yang, Uneven Growth of Thermally Grown Oxide and Stress Distribution in Plasma-Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2009, 203, p 3088-3091

    Article  Google Scholar 

  64. C.G. Zhou, N. Wang, and H.B. Xu, Comparison of Thermal Cycling Behavior of Plasma-Sprayed Nanostructured and Traditional Thermal Barrier Coatings, Mater. Sci. Eng., A, 2007, 452-453, p 569-574

    Article  Google Scholar 

  65. C.G. Zhou, C.L. Wang, and Y.X. Song, Evaluation of Cyclic Oxidation of Thermal Barrier Coatings Exposed to NaCl Vapor by Finite Element Method, Mater. Sci. Eng., A, 2008, 490, p 351-358

    Article  Google Scholar 

  66. X.Q. Cao, R. Vassen, and D. Stöver, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24, p 1-10

    Article  Google Scholar 

  67. D.M. Zhu and R.A. Miller, Determination of Creep Behavior of Thermal Barrier Coatings Under Laser Imposed High Thermal and Stress Gradient Conditions, J. Mater. Res., 1999, 14, p 146-161

    Article  Google Scholar 

  68. D.M. Zhu and R.A. Miller, Sintering and Creep Behavior of Plasma-Sprayed Zirconia- and Hafnia-Based Thermal Barrier Coatings, Surf. Coat. Technol., 1998, 108-109, p 114-120

    Article  Google Scholar 

  69. J. Rösler, M. Bäker, and K. Aufzug, A Parametric Study of the Stress State of Thermal Barrier Coating-Part I: Creep Relaxation, Acta Mater., 2004, 52, p 4809-4817

    Google Scholar 

  70. J. Ding, F.X. Li, and K.J. Kang, Effects of Material Creep on Displacement Instability in a Surface Groove Under Thermo-mechanical Cycling, Surf. Coat. Technol., 2009, 204, p 157-164

    Article  Google Scholar 

  71. M. Białas, Finite Element Analysis of Stress Distribution in Thermal Barrier Coatings, Surf. Coat. Technol., 2008, 202, p 6002-6010

    Article  Google Scholar 

  72. D. Seo, K. Ogawa, Y. Nakao, H. Miura, and T. Shoji, Influence of High-Temperature Creep Stress on Growth of Thermally Grown Oxide in Thermal Barrier Coatings, Surf. Coat. Technol., 2009, 203, p 1979-1983

    Article  Google Scholar 

  73. J. Schwarzer, D. Löhe, and O. Vöhringer, Influence of the TGO Creep Behavior on Delamination Stress Development in Thermal Barrier Coating Systems, Mater. Sci. Eng., A, 2004, 387-389, p 692-695

    Article  Google Scholar 

  74. J. Rösler, M. Bäker, and M. Volgmann, Stress State and Failure Mechanisms of Thermal Barrier Coatings: Role of Creep in Thermally Grown Oxide, Acta Mater., 2001, 49, p 3659-3670

    Article  Google Scholar 

  75. A.N. Khan and J. Lu, Behavior of Air Plasma Sprayed Thermal Barrier Coatings, Subject to Intense Thermal Cycling, Surf. Coat. Technol., 2003, 166, p 37-43

    Article  Google Scholar 

  76. W.R. Chen, X. Wu, and D. Dudzinski, Influence of Thermal Cycle Frequency on the TGO Growth and Cracking Behaviors of an APS-TBC, J. Therm. Spray Technol., 2012, 21, p 1294-1299

    Article  Google Scholar 

  77. X.L. Fan and W.J. Qin, Stress Distribution in the Vicinity of Thermally Grown Oxide of Thermal Barrier Coatings, Adv. Mater. Res., 2011, 160-162, p 721-725

    Article  Google Scholar 

  78. E.P. Busso, H.E. Evans, Z.Q. Qian, and M.P. Taylor, Effects of Breakaway Oxidation on Local Stresses in Thermal Barrier Coatings, Acta Mater., 2010, 58, p 1242-1251

    Article  Google Scholar 

  79. A.M. Limarga, S. Widjaja, T.H. Yip, and L.K. Teh, Modeling of the Effect of Al2O3 Interlayer on Residual Stress due to Oxide Scale in Thermal Barrier Coatings, Surf. Coat. Technol., 2002, 153, p 16-24

    Article  Google Scholar 

  80. M. Martena, D. Botto, P. Fino, S. Sabbadini, M.M. Gola, and C. Badini, Modelling of TBC System Failure: Stress Distribution as a Function of TGO Thickness and Thermal Expansion Mismatch, Eng. Fail. Anal., 2006, 13, p 409-426

    Article  Google Scholar 

  81. D. Pan, M.W. Chen, P.K. Wright, and K.J. Hemker, Evolution of a Diffusion Aluminide Bond Coat for Thermal Barrier Coatings During Thermal Cycling, Acta Mater., 2003, 51, p 2205-2217

    Article  Google Scholar 

  82. R. Panat, S.L. Zhang, and K.J. Hsia, Bond Coat Surface Rumpling in Thermal Barrier Coatings, Acta Mater., 2003, 51, p 239-249

    Article  Google Scholar 

  83. M. Saremi, A. Afrasiabi, and A. Kobayashi, Microstructural Analysis of YSZ and YSZ/Al2O3 Plasma Sprayed Thermal Barrier Coatings After High Temperature Oxidation, Surf. Coat. Technol., 2008, 202, p 3233-3238

    Article  Google Scholar 

  84. L.Y. Ni, C. Liu, and C.G. Zhou, A Life Prediction Model of Thermal Barrier Coatings, Int. J. Mod. Phys. B, 2010, 24, p 3161-3166

    Article  Google Scholar 

  85. E.P. Busso, J. Lin, and S. Sakurai, A Mechanistic Study of Oxidation-Induced Degradation in a Plasma-Sprayed Thermal Barrier Coating System: Part II: Life Prediction Model, Acta Mater., 2001, 49, p 1529-1536

    Article  Google Scholar 

  86. T. Strangman, D. Raybould, A. Jameel, and W. Baker, Damage Mechanisms, Life Prediction, and Development of EB-PVD Thermal Barrier Coatings for Turbine Airfoils, Surf. Coat. Technol., 2007, 202, p 658-664

    Article  Google Scholar 

  87. Y. Liu, C. Persson, and J. Wigren, Experimental and Numerical Life Prediction of Thermally Cycled Thermal Barrier Coatings, J. Therm. Spray Technol., 2004, 13, p 415-424

    Article  Google Scholar 

  88. M. Wen, E.H. Jordan, and M. Gell, Remaining Life Prediction of Thermal Barrier Coatings Based on Photoluminescence Piezospectroscopy Measurements, J. Eng. Gas Turbines Power, 2006, 128, p 610-616

    Article  Google Scholar 

  89. S. Sodeoka, M. Suzuki, and T. Inoue, Thermal Barrier Coatings with two ZrO2-Based Ceramic Layers. Surf. Mod. Technol. 1998, 287-292

  90. P.G. Charalambides, J. Lund, A.G. Evans, and R.M. McMeeking, Optimal Bounds and Microgeometries for Elastic Two-Phase Composites, SIAM J. Appl. Math., 1987, 47, p 1216-1228

    Article  Google Scholar 

  91. R. Herzog, R. Steinbrech, S. Heckmann, D. Sebold, W. J. Quadakkers, F. Schubert, L. Singheiser, H. Echsler, and M. Schütze, A Contribution to Life Prediction for Thermal Barrier Coatings: The Concept of Accumulated Damage, Proceedings of Materials Week, Munich, 2001

  92. D.R. Clarke, The Lateral Growth Strain Accompanying the Formation of a Thermally Grown Oxide, Acta Mater., 2003, 51, p 1393-1407

    Article  Google Scholar 

  93. L. Wang, Y. Wang, X.G. Sun, J.Q. He, Z.Y. Pan, and C.H. Wang, Microstructure and Indentation Mechanical Properties of Plasma Sprayed Nano-bimodal and Conventional ZrO2-8wt%Y2O3 Thermal Barrier Coatings, Vacuum, 2012, 86, p 1162-1173

    Google Scholar 

  94. L. Wang, Y. Wang, and X.G. Sun, Preparation of 8YSZ and Double-Ceramic-Layer La2Zr2O7/8YSZ Thermal Barrier Coatings on GH4169 Superalloy Substrates and Their Static High Temperature Oxidation Behavior, Mater. Sci. Forum, 2013, 749, p 617-632

    Article  Google Scholar 

Download references

Acknowledgments

We express our gratitude to the high Speed Computational Center of Harbin Institute of Technology (HIT) for providing software support. This work was jointed supported by the National Natural Science Foundation of China (NSFC) under the Grant No. 51202277, Young Scholar Project (No. 12ZR1452000) supported by the Shanghai Science and Technology Committee and 2012 Innovation Fund of SICCAS (Y35ZC6160G). In addition, we also express our sincere gratitude to Dr. Yuexing Zhao for his providing the experimental data to verify our simulation and theoretical calculation results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Zhao, Y.X., Zhong, X.H. et al. Influence of “Island-Like” Oxides in the Bond-Coat on the Stress and Failure Patterns of the Thermal-Barrier Coatings Fabricated by Atmospheric Plasma Spraying During Long-Term High Temperature Oxidation. J Therm Spray Tech 23, 431–446 (2014). https://doi.org/10.1007/s11666-013-0008-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-013-0008-7

Keywords

Navigation