Skip to main content
Log in

Permeability and Microstructure of Suspension Plasma-Sprayed YSZ Electrolytes for SOFCs on Various Substrates

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Yttria-stabilized zirconia electrolyte coatings for solid oxide fuel cells were deposited by suspension plasma spraying using a range of spray conditions and a variety of substrates, including finely structured porous stainless steel disks and cathode layers on stainless steel supports. Electrolyte permeability values and trends were found to be highly dependent on which substrate was used. The most gas-tight electrolyte coatings were those deposited directly on the porous metal disks. With this substrate, permeability was reduced by increasing the torch power and reducing the stand-off distance to produce dense coating microstructures. On the substrates with cathodes, electrolyte permeability was reduced by increasing the stand-off distance, which reduced the formation of segmentation cracks and regions of aligned and concentrated porosity. The formation mechanisms of the various permeability-related coating features are discussed and strategies for reducing permeability are presented. The dependences of electrolyte deposition efficiency and surface roughness on process conditions and substrate properties are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P. Blennow, J. Hjelm, T. Klemensø, S. Ramousse, A. Kromp, A. Leonide, and A. Weber, Manufacturing and Characterization of Metal-Supported Solid Oxide Fuel Cells, J. Power Sources, 2011, 196(17), p 7117-7125

    Article  CAS  Google Scholar 

  2. P. Szabo, J. Arnold, T. Franco, M. Gindrat, A. Refke, A. Zagst, and A. Ansar, Progress in the Metal Supported Solid Oxide Fuel Cells and Stacks for APU, ECS Trans., 2009, 25(2), p 175-185

    Article  CAS  Google Scholar 

  3. J. Oberste Berghaus, J.-G. Legoux, C. Moreau, R. Hui, C. Decès-Petit, W. Qu, S. Yick, Z. Wang, R. Maric, and D. Ghosh, Suspension HVOF Spraying of Reduced Temperature Solid Oxide Fuel Cell Electrolytes, J. Therm. Spray Technol., 2008, 17(5-6), p 700-707

    Article  Google Scholar 

  4. R. Vaßen, D. Hathiramani, J. Mertens, V.A.C. Haanappel, and I.C. Vinke, Manufacturing of High Performance Solid Oxide Fuel Cells (SOFCs) with Atmospheric Plasma Spraying (APS), Surf. Coat. Technol., 2007, 202(3), p 499-508

    Article  Google Scholar 

  5. D. Waldbillig and O. Kesler, Effect of Suspension Plasma Spraying Processing Parameters on YSZ Coating Microstructure and Permeability, Surf. Coat. Technol., 2011, 205(23-24), p 5483-5492

    Article  CAS  Google Scholar 

  6. Y. Wang, J.-G. Legoux, R. Neagu, S. Hui, and B.R. Marple, Suspension Plasma Spray and Performance Characterization of Half Cells with NiO/YSZ Anode and YSZ Electrolyte, J. Therm. Spray Technol., 2012, 21(1), p 7-15

    Article  Google Scholar 

  7. R. Henne, Solid Oxide Fuel Cells: A Challenge for Plasma Spray Deposition Processes, J. Therm. Spray Technol., 2007, 16(3), p 381-403

    Article  CAS  Google Scholar 

  8. D. Waldbillig and O. Kesler, Characterization of metal-Supported Axial Injection Plasma Sprayed Solid Oxide Fuel Cells with Aqueous Suspension Plasma Sprayed Electrolyte Layers, J. Power Sources, 2009, 191(2), p 320-329

    Article  CAS  Google Scholar 

  9. D. Waldbillig and O. Kesler, Electrochemical Testing of Suspension Plasma Sprayed Solid Oxide Fuel Cell Electrolytes, J. Power Sources, 2011, 196(13), p 5423-5431

    Article  CAS  Google Scholar 

  10. Y. Wang, J.-G. Legoux, R. Neagu, R. Hui, R. Maric, and B.R. Marple, Deposition of NiO/YSZ Composite and YSZ by Suspension Plasma Spray on Porous Metal, Proceedings of the International Thermal Spray Conference, May 3-5, 2010 (Singapore), DVS Media, 2010, p 446-453

  11. R. Rampon, F.-L. Toma, G. Bertrand, and C. Coddet, Liquid Plasma Sprayed Coatings of Yttria-Stabilized Zirconia for SOFC Electrolytes, J. Therm. Spray Technol., 2006, 15(4), p 682-688

    Article  CAS  Google Scholar 

  12. P. Fauchais, R. Etchart-Salas, C. Delbos, M. Tognonvi, V. Rat, J.F. Coudert, and T. Chartier, Suspension and Solution Plasma Spraying of Finely Structured Layers: Potential Applications to SOFCs, J. Phys. D, 2007, 40(8), p 2394-2406

    Article  CAS  Google Scholar 

  13. M. Marr, D. Waldbillig, and O. Kesler, The Influence of Process Equipment on the Properties of Suspension Plasma Sprayed Yttria-Stabilized Zirconia Coatings, Proceedings of the International Thermal Spray Conference, May 21-24, 2012 (Houston, TX), ASM International, 2012, p 793-799

  14. H.B. Guo, R. Vaßen, and D. Stöver, Atmospheric Plasma Sprayed Thick Thermal Barrier Coatings with High Segmentation Crack Density, Surf. Coat. Technol., 2004, 186(3), p 353-363

    Article  CAS  Google Scholar 

  15. J. Oberste Berghaus, S. Bouaricha, J.-G. Legoux, and C. Moreau, Injection Conditions and In-Flight Particle States in Suspension Plasma Spraying of Alumina and Zirconia Nano-Ceramics, Proceedings of the International Thermal Spray Conference, May 2-4, 2005 (Basel), 2005, p 512-518

  16. K. VanEvery, M.J.M. Krane, R.W. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, and J. Almer, Column Formation in Suspension Plasma-Sprayed Coatings and Resultant Thermal Properties, J. Therm. Spray Technol., 2011, 20(4), p 817-828

    Article  CAS  Google Scholar 

  17. O. Arevalo-Quintero, D. Waldbillig, and O. Kesler, An Investigation of the Dispersion of YSZ, SDC, and Mixtures of YSZ/SDC Powders in Aqueous Suspensions for Application in Suspension Plasma Spraying, Surf. Coat. Technol., 2011, 205(1-2), p 5218-5227

    Article  CAS  Google Scholar 

  18. J. Harris and O. Kesler, Performance of Metal-Supported Composite and Single-Phase Cathodes Based on LSCF and SSC, ECS Trans., 2011, 35(1), p 1927-1934

    Article  CAS  Google Scholar 

  19. P. Fauchais and G. Montavon, Latest Developments in Suspension and Liquid Precursor Thermal Spraying, J. Therm. Spray Technol., 2010, 19(1-2), p 226-239

    Article  Google Scholar 

  20. M. Marr and O. Kesler, A Substrate Surface Thermocouple for Thermal Spraying, Proceedings of the International Thermal Spray Conference, Sept 27-29, 2011 (Hamburg), DVS Media, 2011, p 1441-1445

  21. N. Minh and T. Takahashi, Science and Technology of Ceramic Fuel Cells, Elsevier Science, New York, 1995

    Google Scholar 

  22. X. Song, M. Xie, F. Zhou, G. Jia, X. Hao, and S. An, High-Temperature Thermal Properties of Yttria Fully Stabilized Zirconia Ceramics, J. Rare Earths, 2011, 29(2), p 155-159

    Article  CAS  Google Scholar 

  23. F. Cverna, Ed., ASM Ready Reference. Thermal Properties of Metals, ASM International: Materials Park, OH, 2002

  24. D.W. Visser, A.P. Ramirez, and M.A. Subramanian, Thermal Conductivity of Manganite Perovskites: Colossal Magnetoresistance as a Lattice-Dynamics Transition, Phys. Rev. Lett., 1997, 78(20), p 3947-3950

    Article  CAS  Google Scholar 

  25. Q. Xu, D.P. Huang, F. Zhang, W. Chen, M. Chen, and H.X. Liu, Structure, Electrical Conducting and Composite Cathodes Thermal Expansion Properties of La0.6Sr0.4Co0.8Fe0.2O3-δ-Ce0.8Sm0.2O2-δ, J. Alloys Compd., 2008, 454(1-2), p 460-465

    Article  CAS  Google Scholar 

  26. X.Q. Cao, R. Vassen, and D. Stoever, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24(1), p 1-10

    Article  CAS  Google Scholar 

  27. A.J. Zhou, T.J. Zhu, and X.B. Zhao, Thermoelectric Properties of Perovskite Oxides La1−x Sr x CoO3 Prepared by Polymerized Complex Method, J. Mater. Sci., 2008, 43(5), p 1520-1524

    Article  CAS  Google Scholar 

  28. H.Y. Tu, Y. Takeda, N. Imanishi, and O. Yamamoto, Ln1−x Sr x CoO3 (Ln = Sm, Dy) for the Electrode of Solid Oxide Fuel Cells, Solid State Ion., 1997, 100(3-4), p 283-288

    Article  CAS  Google Scholar 

  29. K.H. Jung, S.M. Choi, H.H. Park, and W.S. Seo, High Temperature Thermoelectric Properties of Sr and Fe Doped SmCoO3 Perovskite Structure, Curr. Appl. Phys., 2011, 11(3 Suppl.), p S260-S265

    Article  Google Scholar 

  30. C. Zhang, W.-Y. Li, M.-P. Planche, C.-X. Li, H. Liao, C.-J. Li, and C. Coddet, Study on Gas Permeation Behaviour Through Atmospheric Plasma-Sprayed Yttria Stabilized Zirconia Coating, Surf. Coat. Technol., 2008, 202(20), p 5055-5061

    Article  CAS  Google Scholar 

  31. S. Kozerski, L. Latka, L. Pawlowski, F. Cernuschi, F. Petit, C. Pierlot, H. Podlesak, and J.P. Laval, Preliminary Study on Suspension Plasma Sprayed ZrO2 + 8 wt.% Y2O3 Coatings, J. Eur. Ceram. Soc., 2011, 31(12), p 2089-2098

    Article  CAS  Google Scholar 

  32. R. Vaßen, H. Kaßner, G. Mauer, and D. Stöver, Suspension Plasma Spraying: Process Development and Applications, Proceedings of the International Thermal Spray Conference, May 4-7, 2009 (Las Vegas, NV), ASM International, 2009, p 162-167

  33. H. Kassner, R. Siegert, D. Hathiramani, R. Vassen, and D. Stoever, Application of Suspension Plasma Spraying (SPS) for Manufacture of Ceramic Coatings, J. Therm. Spray Technol., 2008, 17(1), p 115-123

    Article  CAS  Google Scholar 

  34. T.A. Taylor, Thermal Barrier Coatings for Substrate and Process for Producing It, U.S. Patent 5,073,433, 1989

  35. M. Karger, R. Vaßen, and D. Stöver, Atmospheric Plasma Sprayed Thermal Barrier Coatings with High Segmentation Crack Densities: Spraying Process, Microstructure and Thermal Cycling Behavior, Surf. Coat. Technol., 2011, 206(1), p 16-23

    Article  CAS  Google Scholar 

  36. L. Latka, S.B. Goryachev, S. Kozerski, L. Pawlowski, and T. Lampke, Buildup Mechanisms of Suspension Plasma Sprayed ZrO2 + 8 wt.% Y2O3 Coatings, Proceedings of the International Thermal Spray Conference, Sept 27-29, 2011 (Hamburg), DVS Media, 2011, p 126-130

  37. J. Ilavsky, A.J. Allen, G.G. Long, S. Krueger, C.C. Berndt, and H. Herman, Influence of Spray Angle on the Pore and Crack Microstructure of Plasma-Sprayed Deposits, J. Am. Ceram. Soc., 1997, 80(3), p 733-742

    Article  CAS  Google Scholar 

  38. J. Kitamura, Z. Tang, H. Mizuno, K. Sato, and A. Burgess, Structural, Mechanical and Erosion Properties of Yttrium Oxide Coatings by Axial Suspension Plasma Spraying for Electronics Applications, J. Therm. Spray Technol., 2011, 20(1-2), p 170-185

    Article  CAS  Google Scholar 

  39. O. Racek, The Effect of HVOF Particle-Substrate Interactions on Local Variations in the Coating Microstructure and the Corrosion Resistance, J. Therm. Spray Technol., 2010, 19(5), p 841-851

    Article  CAS  Google Scholar 

  40. R.W. Trice and K.T. Faber, Role of Lamellae Morphology on the Microstructural Development and Mechanical Properties of Small-Particle Plasma-Sprayed Alumina, J. Am. Ceram. Soc., 2000, 83(4), p 889-896

    Article  CAS  Google Scholar 

  41. P. Bengtsson and T. Johannesson, Characterization of Microstructural Defects in Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 1995, 4(3), p 245-251

    Article  CAS  Google Scholar 

  42. J.E. Keem and J.M. Honig, “Selected Electrical and Thermal Properties of Undoped Nickel Oxide”, CINDAS Report 52, West Lafayette, IN, Aug 1978

  43. J. Fazilleau, C. Delbos, V. Rat, J.F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 1: Suspension Injection and Behaviour, Plasma Chem. Plasma Process., 2006, 26(4), p 371-391

    Article  CAS  Google Scholar 

  44. D. Soysal and A. Ansar, Novel Insights into Liquid Behaviour in Atmospheric Plasma Jets, Proceedings of the International Thermal Spray Conference, May 21-24, 2012 (Houston), ASM International, 2012, p 816-821

Download references

Acknowledgments

The authors are grateful to the Centre for Advanced Coating Technologies (CACT) for allowing us to use their facilities at the University of Toronto, and would like to thank Tiegang Li for his assistance with plasma spraying, and Jeff Harris for his help in preparing the cathodes. Research and salary funding were provided by the Natural Sciences and Engineering Research Council of Canada (NSERC), and the International Thermal Spray Association (ITSA) graduate scholarship. Equipment funding was provided by the Canada Foundation for Innovation (CFI) and the Ontario Ministry for Research and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivera Kesler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marr, M., Kesler, O. Permeability and Microstructure of Suspension Plasma-Sprayed YSZ Electrolytes for SOFCs on Various Substrates. J Therm Spray Tech 21, 1334–1346 (2012). https://doi.org/10.1007/s11666-012-9829-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-012-9829-z

Keywords

Navigation