Skip to main content
Log in

A Novel Plasma-Sprayed Durable Thermal Barrier Coating with a Well-Bonded YSZ Interlayer Between Porous YSZ and Bond Coat

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Atmospheric plasma-sprayed YSZ (yttria-stabilized zirconia) thermal barrier coatings (TBCs) are widely used in industrial gas turbine engines to protect the superalloy blades from failure. The failure of TBCs in service occurs by the spalling of YSZ coating. Crack propagation leading to the failure of plasma-sprayed TBCs usually occurs within the YSZ coating near the YSZ/bond coat interface. In the present study, a novel durable TBC consisting of a YSZ interlayer of well-bonded lamellae between the bond coat and the conventional YSZ porous top coat was introduced. The YSZ interlayer was deposited at different coating surface temperatures, which resulted in the formation of YSZ with significantly improved interlamellar bonding. The result shows that the thermal cyclic lifetime of the novel TBCs with the 20-30-μm-thick YSZ interlayer increased by a factor of 4 compared with that of the conventional one. The improved thermal cyclic lifetime was attributed to the controlled transition of the cracking path from near the YSZ/bond coat interface to the YSZ top layer. The effect of the YSZ interlayer thickness on the lifetime of TBCs was also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.S. Ali, S.H. Song, and P. Xiao, Degradation of Thermal Barrier Coatings Due to Thermal Cycling Up to 1150°C, J. Mater. Sci., 2002, 37, p 2097-2102

    Article  CAS  Google Scholar 

  2. W.J. Brindley, Thermal Barrier Coatings, J. Therm. Spray Technol., 1996, 5, p 379-380

    Article  Google Scholar 

  3. A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit, Mechanisms Controlling the Durability of Thermal Barrier Coatings, Prog. Mater. Sci., 2001, 46, p 505-553

    Article  Google Scholar 

  4. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 12, p 280-284

    Article  Google Scholar 

  5. I. Gurrappa and A. Sambasiva Rao, Thermal Barrier Coatings for Enhanced Efficiency of Gas Turbine Engines, surf. Coat. Technol., 2006, 201, p 3016-3029

    Article  CAS  Google Scholar 

  6. C.-J. Li and A. Ohmori, Relationships Between the Microstructure and Properties of Thermally Sprayed Deposits, J. Therm. Spray Technol., 2002, 11, p 365-374

    Article  CAS  Google Scholar 

  7. G.-X. Wang, R. Goswami, S. Sampath, and V. Prasad, Understanding the Heat Transfer and Solidification of Plasma-Sprayed Yttria-Partially Stabilized Zirconia Coatings, Mater. Manuf. Process., 2004, 19, p 259-272

    Article  Google Scholar 

  8. K.W. Schlichting, N.P. Padture, E.H. Jordan, and M. Gell, Failure Modes in Plasma-Sprayed Thermal Barrier Coatings, Mater. Sci. Eng. A, 2003, A342, p 120-130

    CAS  Google Scholar 

  9. J.A. Haynes, M.K. Ferber, W.D. Porter, and E.D. Rigney, Characterization of Alumina Scales Formed During Isothermal and Cyclic oxidation of Plasma-Sprayed TBC Systems at 1150°C, Oxid. Met., 1999, 52, p 31-76

    Article  CAS  Google Scholar 

  10. Y. Li, C.-J. Li, Q. Zhang, G.-J. Yang, and C.-X. Li, Influence of TGO Composition on the Thermal Shock Lifetime of Thermal Barrier Coatings with Cold-Sprayed MCrAlY Bond Coat, J. Therm. Spray Technol., 2010, 19, p 168-177

    Article  CAS  Google Scholar 

  11. C.H. Hsueh and E.R. Fuller, Jr., Analytical Modeling of Oxide Thickness Effects on Stresses in Thermal Barrier Coatings, Scr. Mater., 2000, 42, p 781-787

    Article  CAS  Google Scholar 

  12. D.R. Clarke and W. Pompe, Critical Radius for Interface Separation of a Compressively Stressed Film from a Rough Surface, Acta Mater., 1999, 47, p 1749-1756

    Article  CAS  Google Scholar 

  13. B.G. Nair, J.P. Singh, and M. Grimsditch, Stress Analysis in Thermal Barrier Coatings Subjected to Long-Term Exposure in Simulated Turbine Conditions, J. Mater. Sci., 2004, 39, p 2043-2051

    Article  CAS  Google Scholar 

  14. Q.L. Wei, H.B. Guo, and S.K. Gong, Novel Microstructure of EB-PVD Double Ceramic Layered Thermal Barrier Coatings, Thin Solid Films, 2008, 516, p 5736-5739

    Article  CAS  Google Scholar 

  15. K.V. Niessen, M. Gindrat, and R. Refke, Vapor Phase Deposition Using LPPS Thin Film, Thermal Spray 2009: Expanding Thermal Spray Performance to New Markets and Applications, Ed. B.R. Marple, M.M. Hyland, Y.-C Lau, C.-J. Li, R.S. Lima and G. Montavon, Pub. ASM International, Materials Park, OH, USA, 2009, CD-ROM, 729-736

  16. H.B. Guo, R. Vaßen, and D. Stöver, Atmospheric Plasma Sprayed Thick Thermal Barrier Coatings with High Segmentation Crack Density, Surf. Coat. Technol., 2004, 186, p 353-363

    Article  CAS  Google Scholar 

  17. H.B. Guo, S. Kuroda, and H. Murakami, Segmented Thermal Barrier Coatings Produced by Atmospheric Plasma Spraying Hollow Powders, Thin Solid Films, 2006, 506-507, p 136-139

    Article  CAS  Google Scholar 

  18. M. Gell, L.D. Xie, E.H. Jordan, and N.P. Padture, Mechanisms of Spallation of Solution Precursor Plasma Spray Thermal Barrier Coatings, surf. Coat. Technol., 2004, 188-189, p 101-106

    Article  CAS  Google Scholar 

  19. L.D. Xie, D.Y. Chen, E.H. Jordan et al., Formation of Vertical Cracks in Solution-Precursor Plasma-Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2006, 201, p 1058-1064

    Article  CAS  Google Scholar 

  20. A.D. Jadhav, N.P. Padture, E.H. Jordan, A. Ozturk, F. Wu, X.Q. Ma, B.M. Cetegen, and M. Gell, Low-Thermal-Conductivity Plasma-Sprayed Thermal Barrier Coatings with Engineered Microstructures, Acta Mater., 2006, 54, p 3343-3349

    Article  CAS  Google Scholar 

  21. Q. Zhang, C.-J. Li, Y. Li et al., Thermal Failure of Nanostructured Thermal Barrier Coatings with Cold-Sprayed Nanostructured NiCrAlY Bond Coat, J. Therm. Spray Technol., 2008, 17, p 838-845

    Article  CAS  Google Scholar 

  22. C.-J. Li and W.-Z. Wang, Quantitative Characterization of Lamellar Microstructure of Plasma-Sprayed Ceramic Coatings Through Visualization of Void Distribution, Mater. Sci. Eng. A, 2004, A386, p 10-19

  23. A. Ohmori, C.-J. Li, and Y. Arata, Influence of Plasma Spray Conditions on the Structure of Al2O3 Coatings, Trans. Jpn. Weld. Res. Inst., 1990, 19, p 259-270

    CAS  Google Scholar 

  24. A. Ohmori and C.-J. Li, Quantitative Characterization of the Structure of Plasma-Sprayed Al2O3 Coating by Using Copper Electroplating, Thin Solid Films, 1991, 201, p 241-252

    Article  CAS  Google Scholar 

  25. Y.Z. Xing, C.-J. Li, Q. Zhang, C.-X. Li, and G.-J. Yang, Influence of Microstructure on the Ionic Conductivity of Plasma-Sprayed Yttria-Stabilized Zirconia Deposits, J. Am. Ceram. Soc., 2008, 91, p 3931-3936

    Article  CAS  Google Scholar 

  26. D.M. Gray, Y.C. Lau, C.A. Johnson, M.P. Borom, and W.A. Nelson, Thermal Barrier Coatings Having an Improved Columnar Microstructure, U.S. Patent 5,830,586, 1998

  27. M.P. Borom, D.M. Gray, and C.A. Johnson, Directionally Solidified Thermal Barrier Coating, U.S. Patent, 5,897,921, 1999

  28. M.P. Borom, D.M. Gray, and C.A. Johnson, Directionally Solidified Thermal Barrier Coating, U.S. Patent, 5,989,343, 1999

  29. Y.-Z. Xing, C.-J. Li, C.-X. Li, and G.-J. Yang, Relationship Between the Interlamellar Bonding and Properties of Plasma-Sprayed Y2O3-ZrO2 Coatings, Thermal Spray 2009: Expanding Thermal Spray Performance to New Markets and Applications, CD-ROM, B.R. Marple, M.M. Hyland, Y.-C Lau, C.-J. Li, R.S. Lima, and G. Montavon, Ed. (Materials Park, OH, USA), ASM International, 2009, p 939-944

  30. Y. Li, C.-J. Li, Y.-Z. Xing, G.-J. Yang, and C.-X. Li, Influence of Microstructure on Thermal Conductivity of Plasma-Sprayed YSZ Coating, Thermal Spray 2009: Expanding Thermal Spray Performance to New Markets and Applications, CD-ROM, B.R. Marple, M.M. Hyland, Y.-C Lau, C.-J. Li, R.S. Lima, and G. Montavon (Materials Park, OH, USA), ASM International, 2009, p 51-55

Download references

Acknowledgments

The present study was financially supported by the National Natural Science Funds of China (50725101), and by the National Basic Research Program of China (No. 2007CB707702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jiu Li.

Additional information

This article is an invited paper selected from presentations at the 2011 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Thermal Spray 2011: Proceedings of the International Thermal Spray Conference, Hamburg, Germany, September 27-29, 2011, Basil R. Marple, Arvind Agarwal, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and André McDonald, Ed., ASM International, Materials Park, OH, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, CJ., Li, Y., Yang, GJ. et al. A Novel Plasma-Sprayed Durable Thermal Barrier Coating with a Well-Bonded YSZ Interlayer Between Porous YSZ and Bond Coat. J Therm Spray Tech 21, 383–390 (2012). https://doi.org/10.1007/s11666-012-9771-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-012-9771-0

Keywords

Navigation