Skip to main content
Log in

The Protectiveness of Thermally Grown Oxides on Cold Sprayed CoNiCrAlY Bond Coat in Thermal Barrier Coating

  • Peer-Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

This paper presents the results of an oxidation behavior study for a thermal barrier coating (TBC) with air plasma sprayed yttria-stabilized zirconia top coat and CoNiCrAlY bond coat deposited using low pressure plasma spray (LPPS) and cold spray (CS). The TBC is subjected to isothermal oxidation and creep tests at 900 °C and evaluated using scanning electron microscopy, energy dispersive x-ray spectrometry transmission electron microscopy and electron backscatter diffraction. The thermally grown oxide (TGO) developed in the TBC with the LPPS bond coat was composed of only α-Al2O3 and the TGO developed in the TBC with a CS bond coat is composed of α-Al2O3 and γ-Al2O3. Despite the presence of this metastable γ phase, the TGO in the CS specimens exhibits a dense microstructure and lower amounts of mixed oxides. The correlation between γ-Al2O3 and the formation of mixed oxides was investigated through the measurement of γ-Al2O3 thickness ratio and mixed oxides coverage ratio. It was found that the mixed oxides coverage ratio is inversely proportional to the γ-Al2O3 thickness ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.R. Chen, X. Wu, B.R. Marple, and P.C. Patnaik, Oxidation and Crack Nucleation/Growth in an Air-Plasma-Sprayed Thermal Barrier Coating with NiCrAlY Bond Coat, Surf. Coat. Technol., 2005, 197, p 109-115

    Article  CAS  Google Scholar 

  2. E.P. Busso, J. Lin, S. Sakurai, and M. Nakayama, A Mechanistic Study of Oxidation-Induced Degradation in a Plasma-Sprayed Thermal Barrier Coating System: Part I: Model Formulation, Acta Mater., 2001, 49, p 1515-1528

    Article  CAS  Google Scholar 

  3. E.P. Busso and Z. Qian, A Mechanistic Study of Microcracking in Transversely Isotropic Ceramic-Metal Systems, Acta Mater., 2006, 54, p 325-338

    Article  CAS  Google Scholar 

  4. E.P. Busso, L. Wright, H.E. Evans, L.N. McCartney, S.R.J. Saunders, S. Osgerby, and J. Nunn, A Physics-Based Life Prediction Methodology for Thermal Barrier Coating Systems, Acta Mater., 2007, 55, p 491-503

    Article  Google Scholar 

  5. S. Taniguchi, Discussions on Some Properties of Alumina Scales and Their Protectiveness, Mater. Sci. Forum, 2011, 696, p 51-56

    Article  CAS  Google Scholar 

  6. X. Peng, D.R. Clarke, and F. Wang, Transient-Alumina Transformations During the Oxidation of Magnetron-Sputtered CoCrAl Nanocrystalline Coatings, Oxid. Met., 2003, 60, p 225-240

    Article  CAS  Google Scholar 

  7. Y. Li, C.-J. Li, Q. Zhang, G.-J. Yang, and C.-X. Li, Influence of TGO Composition on the Thermal Shock Lifetime of Thermal Barrier Coatings with Cold-Sprayed MCrAlY Bond Coat, J. Therm. Spray Technol., 2010, 19, p 168-177

    Article  CAS  Google Scholar 

  8. G.Y. Liang, C. Zhu, X.Y. Wu, and Y. Wu, The Formation Model of Ni-Cr Oxides on NiCoCrAlY-Sprayed Coating, Appl. Surf. Sci., 2011, 257, p 6468-6473

    Article  CAS  Google Scholar 

  9. M. Karadge, X. Zhao, M. Preuss, and P. Xiao, Microtexture of the Thermally Grown Alumina in Commercial Thermal Barrier Coatings, Scripta Mater., 2006, 54, p 639-644

    Article  CAS  Google Scholar 

  10. K. Ogawa, K. Ito, T. Shoji, D.W. Seo, H. Tezuka, and H. Kato, Effects of Ce and Si Additions to CoNiCrAlY Bond Coat Materials on Oxidation Behavior and Crack Propagation of Thermal Barrier Coatings, J. Therm. Spray Technol., 2006, 15(4), p 640-651

    Article  CAS  Google Scholar 

  11. M.H. Li, Z.Y. Zhang, X.F. Sun, J.G. Li, F.S. Yin, W.Y. Hu, H.R. Guan, and Z.Q. Hu, Oxidation Behavior of Sputter-Deposited NiCrAlY Coating, Surf. Coat. Technol., 2003, 165, p 241-247

    Article  CAS  Google Scholar 

  12. Q. Zhang, C.-J. Li, G.-J. Yang, and S.-C. Lui, Study of Oxidation Behavior of Nanostructured NiCrAlY Bond Coatings Deposited by Cold Spraying, Surf. Coat. Technol., 2008, 202(14-15), p 3378-3384

    Article  CAS  Google Scholar 

  13. S.M. Meier and D.K. Gupta, The Evolution of Thermal Barrier Coatings in Gas Turbine Engine Applications, Trans. ASME, 1994, 116, p 250

    Article  CAS  Google Scholar 

  14. P. Richer, A. Zuniga, M. Yandouzi, L. Beauvais, and B. Jodoin, Oxidation Behaviour of CoNiCrAlY Bond Coats Produced by Plasma, HVOF and Cold Gas Dynamic Spraying, Surf. Coat. Technol., 2010, 204(24), p 3962-3974

    Article  CAS  Google Scholar 

  15. P. Richer, A. Zuniga, M. Yandouzi, and B. Jodoin, CoNiCrAlY Microstructural Changes Induced During Cold Gas Dynamic Spraying, Surf. Coat. Technol., 2008, 203(3-4), p 364-371

    Article  CAS  Google Scholar 

  16. M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219(3-4), p 211-227

    Article  CAS  Google Scholar 

  17. A. Manap, D. Seo, and K. Ogawa, Characterization of Thermally Grown Oxide on Cold Sprayed CoNiCrAlY Bond Coat in Thermal Barrier Coating, Mater. Sci. Forum, 2011, 696, p 324-329

    Article  CAS  Google Scholar 

  18. D. Seo, K. Ogawa, Y. Nakao, H. Miura, and T. Shoji, Influence of High-Temperature Creep Stress on Growth of Thermally Grown Oxide in Thermal Barrier Coatings, Surf. Coat. Technol., 2009, 203(14), p 1979-1983

    Article  CAS  Google Scholar 

  19. P.D. Hamsworth and R. Stevens, Microstructure of Zirconia-Yttria Plasma-Sprayed Thermal Barrier Coatings, J. Mater. Sci., 1992, 27, p 616-624

    Article  Google Scholar 

  20. D.S. Gianola, S. Van Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven, and K.J. Hemker, Stress-Assisted Discontinuous Grain Growth and Its Effect on the Deformation Behavior of Nanocrystalline Aluminum Thin Films, Acta Mater., 2006, 54, p 2253-2263

    Article  CAS  Google Scholar 

  21. V. Kolarik, M. Juez-Lorenzo, and H. Fietzek, Oxidation of Micro-Sized Spherical Aluminum Particles, Mater. Sci. Forum, 2011, 696, p 290-295

    Article  CAS  Google Scholar 

  22. T.J. Nijdam and W.G. Sloof, Microstructural Evolution of a MCrAlY Coating upon Isothermal Annealing, Mater. Charact., 2008, 59, p 1697-1704

    Article  CAS  Google Scholar 

  23. M.W. Brumm and H.J. Grabke, The Oxidation Behavior of NiAl—I. Phase Transformations in the Alumina Scale During Oxidation of NiAl-Cr Alloy, Corros. Sci., 1992, 33(11), p 1677-1690

    Article  CAS  Google Scholar 

  24. G.-M. Liu, M.-S. Li, and J.-H. Ma, Transient Oxidation Behavior of Nanocrystalline CoCrAlY Coating at 1050 °C, Trans. Nonferr. Met. Soc. China, 2007, 17, p 595-599

    Article  Google Scholar 

  25. S. Kitaoka, T. Matsudaira, and M. Wada, Control of Polymorphism and Mass-Transfer in Al2O3 Scale Formed by Oxidation of Alumina-Forming Alloys, Mass Transfer in Multiphase Systems and Its Applications, M. El-Amin, Ed., InTech, 2011, p 343-366

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Manap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manap, A., Nakano, A. & Ogawa, K. The Protectiveness of Thermally Grown Oxides on Cold Sprayed CoNiCrAlY Bond Coat in Thermal Barrier Coating. J Therm Spray Tech 21, 586–596 (2012). https://doi.org/10.1007/s11666-012-9749-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-012-9749-y

Keywords

Navigation