Skip to main content
Log in

Relationship Between Particle and Plasma Properties and Coating Characteristics of Samaria-Doped Ceria Prepared by Atmospheric Plasma Spraying for Use in Solid Oxide Fuel Cells

  • Peer-Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Samaria-doped ceria (SDC) has become a promising material for the fabrication of high-performance, intermediate-temperature solid oxide fuel cells (SOFCs). In this study, the in-flight characteristics, such as particle velocity and surface temperature, of spray-dried SDC agglomerates were measured and correlated to the resulting microstructures of SDC coatings fabricated using atmospheric plasma spraying, a manufacturing technique with the capability of producing full cells in minutes. Plasmas containing argon, nitrogen and hydrogen led to particle surface temperatures higher than those in plasmas containing only argon and nitrogen. A threshold temperature for the successful deposition of SDC on porous stainless steel substrates was calculated to be 2570 °C. Coating porosity was found to be linked to average particle temperature, suggesting that plasma conditions leading to lower particle temperatures may be most suitable for fabricating porous SOFC electrode layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Hui, Z.W. Wang, O. Kesler, L. Rose, J. Jankovic, S. Yick, R. Maric, and D. Ghosh, Thermal Plasma Spraying for SOFCs: Applications, Potential Advantages, and Challenges, J. Power Sources, 2007, 170, p 308-323

    Article  CAS  Google Scholar 

  2. O. Kesler, Plasma Spray Processing of Solid Oxide Fuel Cells, Mater. Sci. Forum, 2007, 539-543, p 1385-1390

    Article  CAS  Google Scholar 

  3. J.W. Fergus, Electrolytes for Solid Oxide Fuel Cells, J. Power Sources, 2006, 162, p 30-40

    Article  CAS  Google Scholar 

  4. H. Yahiro, Y. Eguchi, K. Eguchi, and H. Arai, Oxygen Ion Conductivity of the Ceria-Samarium Oxide System with Fluorite Structure, J. Appl. Electrochem., 1988, 18, p 527-531

    Article  CAS  Google Scholar 

  5. C. Wan, W. Pan, Z. Qu, and Y. Qin, Thermophysical Properties of Samarium-Cerium Oxide for Thermal Barrier Coatings Application, Key Eng. Mater., 2007, 336-338 II, p 1773-1775

    Article  Google Scholar 

  6. J. Oberste Berghaus, J.-G. Legoux, C. Moreau, R. Hui, and D. Ghosh, Suspension Plasma Spraying of Intermediate Temperature SOFC Components Using an Axial Injection Dc Torch, Mater. Sci. Forum, 2007, 2007, p 1332-1337

    Article  Google Scholar 

  7. J. Oberste Berghaus, J.-G. Legoux, C. Moreau, R. Hui, C. Deces-Petit, W. Qu, S. Yick, Z. Wang, R. Maric, and D. Ghosh, Suspension HVOF Spraying of Reduced Temperature Solid Oxide Fuel Cell Electrolytes, J. Therm. Spray Technol., 2008, 17, p 700-707

    Article  Google Scholar 

  8. S. Bouaricha, J. Oberste-Berghaus, J.-G. Legoux, D. Ghosh, and C. Moreau, Production of Samarium Doped-Ceria Plasma Sprayed Nano-Coatings Using an Internal Injection of a Suspension Containing Nanoparticles, Thermal Spray Connects: Explore its Surfacing Potential, E. Lugscheider, Ed., May 2-4, 2005 (Basel, Switzerland), DVS Deutscher Verban für Schweiβen, 2005, 1574 pp

  9. G.V. Samsonov, The Oxide Handbook, G.V. Samsonov, Ed., C.N. Turton and T.I. Turton, Trans. (New York), IFI/Plenum, 1973

  10. U. Schulz, B. Saruhan, K. Fritscher, and C. Leyens, Review on Advanced EB-PVD Ceramic Topcoats for TBC Applications, Int. J. Appl. Ceram. Technol., 2004, 1, p 302-315

    Article  CAS  Google Scholar 

  11. S. Sodeoka, M. Suzuki, K. Ueno, H. Sakuramoto, T. Shibata, and M. Ando, Thermal and Mechanical Properties of ZrO2-CeO2 Plasma-Sprayed Coatings, J. Therm. Spray Technol., 1997, 6, p 361-367

    Article  CAS  Google Scholar 

  12. A. Elsebaei, J. Heberlein, M. Elshaer, and A. Farouk, Comparison of In-Flight Particle Properties, Splat Formation, and Coating Microstructure for Regular and Nano-YSZ Powders, J. Therm. Spray Technol., 2010, 19, p 2-10

    Article  CAS  Google Scholar 

  13. A. Kucuk, R.S. Lima, and C.C. Berndt, Influence of Plasma Spray Parameters on Formation and Morphology of ZrO2-8wt% Y2O3 Deposits, J. Am. Ceram. Soc., 2001, 84, p 693-700

    Article  CAS  Google Scholar 

  14. A. Kucuk, R.S. Lima, and C.C. Berndt, Influence of Plasma Spray Parameters on in-Flight Characteristics of ZrO2-8wt% Y2O3 Ceramic Particles, J. Am. Ceram. Soc., 2001, 84, p 685-692

    Article  CAS  Google Scholar 

  15. M. Friis, C. Persson, and J. Wigren, Influence of Particle In-Flight Characteristics on the Microstructure of Atmospheric Plasma Sprayed Yttria Stabilized ZrO2, Surf. Coat. Technol., 2001, 141, p 115-127

    Article  CAS  Google Scholar 

  16. G. Mauer, R. Vaßen, and D. Stoever, Atmospheric Plasma Spraying of Yttria-Stabilized Zirconia Coatings with Specific Porosity, Surf. Coat. Technol., 2009, 204, p 172-179

    Article  CAS  Google Scholar 

  17. H.-B. Xiong, L.-L. Zheng, L. Li, and A. Vaidya, Melting and Oxidation Behavior of In-Flight Particles in Plasma Spray Process, Int. J. Heat Mass Transfer, 2005, 48, p 5121-5133

    Article  CAS  Google Scholar 

  18. G. Mauer, R. Vaßen, and D. Stöver, Comparison and Applications of DPV-2000 and Accuraspray-g3 Diagnostic Systems, J. Therm. Spray Technol., 2007, 16, p 414-424

    Article  CAS  Google Scholar 

  19. G. Mauer, R. Vaßen, and D. Stöver, Detection of Melting Temperatures and Sources of Errors Using Two-Color Pyrometry During In-Flight Measurements of Atmospheric Plasma-Sprayed Particles, Int. J. Thermophys., 2008, 29, p 764-786

    Article  CAS  Google Scholar 

  20. P. Fauchais and G. Montavon, Plasma Spraying: From Plasma Generation to Coating Structure, Adv. Heat Transf., 2007, 40, p 205-344

    Article  CAS  Google Scholar 

  21. M.I. Boulos, Thermal Plasmas: Fundamentals and Applications, vol. 1, P. Fauchais and E. Pfender, Ed. (New York), Plenum Press, 1994, p 388-407

  22. N.Q. Minh, Ceramic Fuel Cells, J. Am. Ceram. Soc., 1993, 76, p 563-588

    Article  CAS  Google Scholar 

  23. J.E. Shemilt, H.M. Williams, M.J. Edirisinghe, J.R.G. Evans, and B. Ralph, Fracture Toughness of Doped-Ceria Ceramics, Scr. Mater., 1997, 36, p 929-934

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the Natural Sciences and Engineering Research Council of Canada (NSERC) and Northwest Mettech Corporation for financial support for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Cuglietta.

Additional information

This article is an invited paper selected from presentations at the 2011 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Thermal Spray 2011: Proceedings of the International Thermal Spray Conference, Hamburg, Germany, September 27-29, 2011, Basil R. Marple, Arvind Agarwal, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and André McDonald, Ed., ASM International, Materials Park, OH, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuglietta, M., Kesler, O. Relationship Between Particle and Plasma Properties and Coating Characteristics of Samaria-Doped Ceria Prepared by Atmospheric Plasma Spraying for Use in Solid Oxide Fuel Cells. J Therm Spray Tech 21, 448–460 (2012). https://doi.org/10.1007/s11666-012-9742-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-012-9742-5

Keywords

Navigation