Skip to main content
Log in

Formation of Pore Structure and Its Influence on the Mass Transport Property of Vacuum Cold Sprayed TiO2 Coatings Using Strengthened Nanostructured Powder

  • Peer-Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The pore structure in nano-porous TiO2 coatings influences the ion diffusion property and the photovoltaic performance of dye-sensitized solar cells. In this paper, TiO2 coatings were deposited by vacuum cold spray (VCS) using a strengthened nanostructured powder. The pore structure, ion diffusion, and dye infiltration properties were examined to understand the coating deposition mechanism. Results showed that the pores in the VCS TiO2 coatings presented a bimodal size distribution with two peaks at ~15 and ~50 nm. Based on the impact behavior of spray powder particles, a deposition model was proposed to explain the formation mechanism of the pores in the VCS coating using strengthened nanostructured powder. It was found that, compared to the conventional unimodal-sized nano-pores in TiO2 coatings, the bimodal-sized nano-pores contributed to a higher ion diffusion coefficient of the coatings and thereby a higher photovoltage of the solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. O’Regan and M. Gratzel, A Low-cost, High Efficiency Solar Cell based on Dye-sensitized Colloidal TiO2 Films, Nature, 1991, 353, p 737-740

    Article  Google Scholar 

  2. J.M. Kroon, N.J. Bakker, H.J.P. Smit, P. Liska, K.R. Thampi, P. Wang, S.M. Zakeeruddin, M. Gratzel, A. Hinsch, S. Hore, U. Wurfel, R. Sastrawan, J.R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G.E. Tulloch, Nanocrystalline Dye-sensitized Solar Cells Having Maximum Performance, Prog. Photovolt: Res. Appl., 2007, 15, p 1-18

    Article  CAS  Google Scholar 

  3. N. Papageorgiou, M. Gratzel, and P.P. Infelta, On the Relevance of Mass Transport in Thin Layer Nanocrystalline Photoelectrochemical Solar Cells, Solar Energy Mater. Solar Cells, 1996, 44, p 405-438

    Article  CAS  Google Scholar 

  4. N. Papageorgiou, C. Barbe, and M. Gratzel, Morphology and Adsorbate Dependence of Ionic Transport in Dye Sensitized Mesoporous TiO2 Films, J. Phys. Chem. B, 1998, 102, p 4156-4164

    Article  CAS  Google Scholar 

  5. H. Lindstrom, A. Holmberg, E. Magnusson, L. Malmqvist, and A. Hagfeldt, A New Method to Make Dye-sensitized Nanocrystalline Solar Cells at Room Temperature, J. Photochem. Photobio. A, 2001, 145, p 107-112

    Article  CAS  Google Scholar 

  6. D. Zhang, T. Yoshida, and H. Minoura, Low-temperature Fabrication of Efficient Porous Titania Photoelectrodes by Hydrothermal Crystallization at the Solid/gas interface, Adv. Mater., 2003, 15, p 814-817

    Article  CAS  Google Scholar 

  7. C.J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications, J. Am. Ceram. Soc., 1997, 80, p 3157-3171

    Article  CAS  Google Scholar 

  8. Y. Saito, S. Kambe, T. Kitamura, Y. Wada, and S. Yanagida, Morphology Control of Mesoporous TiO2 Nanocrystalline Films for Performance of Dye-sensitized Solar Cells, Solar Energy Mater. Solar Cells, 2004, 83, p 1-13

    Article  CAS  Google Scholar 

  9. D.B. Menzies, L. Bourgeois, Y.-B. Cheng, G.P. Simon, N. Brack, and L. Spiccia, Characterization of Nanostructured Core-shell Working Electrodes for Application in Dye-sensitized Solar Cells, Surf. Coat. Technol., 2005, 198, p 118-122

    Article  CAS  Google Scholar 

  10. R. Vaßen, Y. Zeng, H. Kaßner, and D. Stover, Suspension Plasma Spraying of TiO2 for the Manufacture of Photovoltaic Cells, Surf. Coat. Technol., 2009, 203, p 2146-2149

    Article  Google Scholar 

  11. M. Awais, M. Rahman, J.M. Don MacElroy, N. Coburn, D. Dini, J.G. Vos, and D.P. Dowling, Deposition and Characterization of NiO x Coatings by Magnetron Sputtering for Application in Dye-sensitized Solar Cells, Surf. Coat. Technol., 2010, 204, p 2729-2736

    Article  CAS  Google Scholar 

  12. S.-Q. Fan, C.-J. Li, G.-J. Yang, L.-Z. Zhang, J.-C. Gao, and Y.-X. Xi, Fabrication of Nano-TiO2 Coating for Dye-sensitized Solar Cell by Vacuum Cold Spraying at Room Temperature, J. Therm. Spray Technol., 2007, 16, p 893-897

    Article  CAS  Google Scholar 

  13. J. Akedo, Room Temperature Impact Consolidation (RTIC) of Fine Ceramic Powder by Aerosol Deposition Method and Applications to Microdevices, J. Therm. Spray Technol., 2008, 17, p 181-198

    Article  CAS  Google Scholar 

  14. S.-Q. Fan, G.-J. Yang, C.-J. Li, G.-J. Liu, C.-X. Li, and L.-Z. Zhang, Deposition Characterization of Microstructure of Nano-TiO2 Coating Deposited by Vacuum Cold Spraying, J. Therm. Spray Technol., 2006, 15, p 513-517

    Article  CAS  Google Scholar 

  15. W.-Y. Li, C.-J. Li, H.-T. Wang, C.-X. Li, and H.-S. Bang, Measurement and Numerical Simulation of Particle Velocity in Cold Spraying, J. Therm. Spray Technol., 2006, 15, p 559-562

    Article  Google Scholar 

  16. M. Durr, G. Kron, U. Rau, J.H. Werner, A. Yasuda, and G. Nelles, Diffusion-limited Transport of I3 through Nanoporous TiO2-polymer Gel Networks, J. Chem. Phys., 2004, 121, p 11374-11378

    Article  CAS  Google Scholar 

  17. G.-J. Yang, C.-J. Li, S.-Q. Fan, Y.-Y. Wang, and C.-X. Li, Influence of Annealing on Photocatalytic Performance and Adhesion of Vacuum Cold-sprayed Nanostructured TiO2 Coating, J. Therm. Spray Technol., 2007, 16, p 873-880

    Article  CAS  Google Scholar 

  18. S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, and S. Yanagida, Dependence of TiO2 Nanoparticle Preparation Methods and Annealing Temperature on the Efficiency of Dye-sensitized Solar Cells, J. Phys. Chem. B, 2002, 106, p 10004-10010

    Article  CAS  Google Scholar 

  19. S.-Q. Fan, C.-J. Li, G.-J. Yang, J.-C. Gao, L.-Z. Zhang, C.-X. Li, and Y.-Y. Wang, Room-temperature Deposition of Nano-TiO2 Coating by Vacuum Cold Spraying Using TiCl4-agglomerated Nano-TiO2 Powder for Flexible Dye-sensitized Solar Cell, Key Eng. Mater., 2008, 373-374, p 742-745

    Article  CAS  Google Scholar 

  20. N.G. Park, G. Schlichthorl, J. van de Lagemaat, H.M. Cheong, A. Mascarenhas, and A.J. Frank, Dye-sensitized TiO2 Solar Cells: Structural and Photoelectrochemical Characterization of Nanocrystalline Electrodes Formed from the Hydrolysis of TiCl4, J. Phys. Chem. B, 1999, 103, p 3308-3314

    Article  CAS  Google Scholar 

  21. G.-J. Yang, C.-J. Li, S.-Q. Fan, and J.-C. Gao, Influence of Pore Structure on Ion Diffusion Property in Porous TiO2 Coating and Photovoltaic Performance of Dye-sensitized Solar Cells, Surf. Coat. Technol., 2011, 205, p 3205-3210

    Article  CAS  Google Scholar 

  22. A. Hauch and A. Georg, Diffusion in the Electrolyte and Charge-transfer Reaction at the Platinum Electrode in Dye-sensitized Solar Cells, Electrochim. Acta, 2001, 46, p 3457-3466

    Article  CAS  Google Scholar 

  23. G. Kron, U. Rau, M. Durr, T. Miteva, G. Nelles, A. Yasuda, and J.H. Werner, Diffusion limitations to I-3(−)/I electrolyte transport through nanoporous TiO2 networks, Electrochem. Solid-state Lett., 2003, 6, p E11-E14

    Article  CAS  Google Scholar 

  24. H.S. Chen, S.J. Lue, Y.L. Tung, K.W. Cheng, F.Y. Huang, and K.C. Ho, Elucidation of Electrochemical Properties of Electrolyte-impregnated Micro-porous Ceramic Films as Framework Supports in Dye-sensitized Solar Cells, J. Power Sources, 2011, 196, p 4162-4172

    Article  CAS  Google Scholar 

  25. P. Balraju, P. Suresh, Manish Kumar, M.S. Roy, and G.D. Sharma, Effect of Counter Electrode, Thickness and Sintering Temperature of TiO2 Electrode and TBP Addition in Electrolyte on Photovoltaic Performance of Dye Sensitized Solar Cell using Pyronine G (PYR) Dye, J. Photochem. Photobio. A, 2009, 206, p 53-63

    Article  CAS  Google Scholar 

  26. R. Gomez and P. Salvador, Photovoltage Dependence on Film Thickness and Type of Illumination in Nanoporous Thin Film Electrodes according to a Simple Diffusion Model, Solar Energy Mater. Solar Cells, 2005, 88, p 377-388

    Article  CAS  Google Scholar 

  27. S. Ito, S.M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M.K. Nazeeruddin, P. Pechy, M. Takata, H. Miura, S. Uchida, and M. Gratzel, High-Efficiency Organic-Dye-Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness, Adv. Mater., 2006, 18, p 1202-1205

    Article  CAS  Google Scholar 

  28. Z. Kebede and S.E. Lindquist, The Obstructed Diffusion of the I3 Ion in Mesoscopic TiO2 Membranes, Solar Energy Mater. Solar Cells, 1998, 51, p 291-303

    Article  CAS  Google Scholar 

  29. E. Hawlicka, R. Grabowski, and B. Bunsenges, Self-diffusion and Conductance Studies of Acetonitrile-Water Solutions of Tetraethylammonium Iodide, Phys. Chem. Chem. Phys., 1990, 94, p 158-162

    CAS  Google Scholar 

  30. E. Hawlicka, R. Grabowski, and B. Bunsenges, Solvation of Ions in Acetonitrile-Methanol Solutions of Sodium-iodide, Phys. Chem. Chem. Phys., 1990, 94, p 486-489

    CAS  Google Scholar 

  31. N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhote, H. Pettersson, A. Azam, and M. Gratzel, The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications, J. Electrochem. Soc., 1996, 143, p 3099-3108

    Article  CAS  Google Scholar 

  32. T. Hoshikawa, T. Ikebe, R. Kikuchi, and K. Eguchi, Effects of Electrolyte in Dye-sensitized Solar Cells and Evaluation by Impedance Spectroscopy, Electrochim. Acta, 2006, 51, p 5286-5294

    Article  CAS  Google Scholar 

  33. Q. Wang, J.E. Moser, and M. Gratzel, Electrochemical Impedance Spectroscopic Analysis of Dye-sensitized Solar Cells, J. Phys. Chem. B, 2005, 109, p 14945-14953

    Article  CAS  Google Scholar 

  34. M. Koelsch, S. Cassaignon, C.T.T. Minh, J.F. Guillemoles, and J.P. Jolivet, Electrochemical Comparative Study of Titania (anatase, brookite and rutile) Nanoparticles Synthesized in Aqueous Medium, Thin Solid Films, 2004, 451-452, p 86-92

    Article  CAS  Google Scholar 

  35. A. Hayat, S.S. Pandey, Y. Ogomi, and S. Hayase, Relationship Between I(3)(−) Diffusion in Titania Nanopores Modified with Dyes and Open Circuit Voltage of Dye-Sensitized Solar Cell, J. Electrochem. Soc., 2011, 158, p B770-B771

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present project is supported by the NNSFC (No. 51072160, 50602035, 50725101), Program for New Century Excellent Talents in University (No. NCET-08-0443), the Key Project of Chinese Ministry of Education (No. 108113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jiu Li.

Additional information

This article is an invited paper selected from presentations at the 2011 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Thermal Spray 2011: Proceedings of the International Thermal Spray Conference, Hamburg, Germany, September 27-29, 2011, Basil R. Marple, Arvind Agarwal, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and André McDonald, Ed., ASM International, Materials Park, OH, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, GJ., Liao, KX., Li, CJ. et al. Formation of Pore Structure and Its Influence on the Mass Transport Property of Vacuum Cold Sprayed TiO2 Coatings Using Strengthened Nanostructured Powder. J Therm Spray Tech 21, 505–513 (2012). https://doi.org/10.1007/s11666-012-9741-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-012-9741-6

Keywords

Navigation