Skip to main content
Log in

Measurement of Specific Enthalpy Under Very Low Pressure Plasma Spray Condition

  • Peer-Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

VLPPS has attracted much attention in recent years, especially concerning its potential applications but not so much concerning the properties of the plasma jet. Operating parameters such as the chamber pressure and the secondary gas flow rate have a strong influence on specific enthalpy and temperature of the plasma jet, and then on the efficient use of the system. In this work, thermodynamic properties measurements under very low pressure (i.e., around 1 mbar) were performed using a modified enthalpy probe (increase of the internal diameter and thermal insulation of the head). Several parameters such as arc current intensity, hydrogen gas flow rate and working distance were considered in order to check their effect on the characteristics of the plasma jet and to determine the variation of the specific enthalpy, temperature, and heat flux versus these parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

H:

specific enthalpy, kJ/kg

m w :

cooling water flow rate, m3/s

Cp w :

specific heat of water, 4.18 kJ/kg· °C@ 10 °C < T <70 °C

ΔT :

temperature rise of probe cooling water, °C

M g :

sampling gas flow rate at STP (standard temperature 0 °C and pressure 101.3 kPascal), m3/s

ρ w :

density of water, 1000 kg/m3 @20°C

ρ g :

gas density at STP, kg/m3

T :

temperature, K

Q :

quantity of heat, J/s

References

  1. H. Huang, K. Eguchi, M. Kambara, and T. Yoshida, Ultrafast Thermal Plasma Physical Vapor Deposition of Yttria-Stabilized Zirconia for Novel Thermal Barrier Coatings, J. Therm. Spray Technol., 2006, 15, p 83-91

    Article  CAS  Google Scholar 

  2. J.L. Dorier, B. Jodoin, M. Gindrat, A. Blais, C. Hollenstein, and G. Barbezat, A Novel Approach to Interpret Enthalpy Probe Measurements in Low Pressure Supersonic Plasma Jets, 16th International Symposium on Plasma Chemistry, Taormina, 22-27 June 2003

  3. M. Gindrat, H.M. Höhle, K. von Niessen, Ph. Guittienne, D. Grange, and Ch. Hollenstein, Plasma Spray-CVD: A New Thermal Spray Process to Produce Thin Films from Liquid or Gaseous Precursors, J. Therm. Spray Technol., 2011, 20, p 882-887

    Article  Google Scholar 

  4. E.J. Young, E. Mateevaa, J.J. Moorea, B. Mishraa, and M. Lochb, Low Pressure Plasma Spray Coatings, Thin Solid Films, 2000, 377-378, p 788-792

    Article  CAS  Google Scholar 

  5. A. Refke, M. Gindrat, K. von Niessen, and R. Damani, LPPS Thin Film: A Hybrid Coating Technology between Thermal Spray and PVD for Functional Thin Coatings and Large Area Applications, Thermal Spray 2007: Global Coating Solutions, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Ed., ASM International, Beijing, China, 2007, p 705-710

    Google Scholar 

  6. H. Hamatani, W.S. Crawford, and M.A. Cappelli, Optical Measurements of Plasma Velocity and Temperature in a Low-rate, Low-power LPPS System, Surf. Coat. Technol., 2002, 162, p 79-92

    Article  Google Scholar 

  7. S. Schermer, N.H. Bings, A.M. Bilgic, R. Stonies, E. Voges, and J.A.C. Broekaert, An Improved Microstrip Plasma for Optical Emission Spectrometry of Gaseous Species, Spectrochim. Acta B, 2003, 58, p 1585-1596

    Article  Google Scholar 

  8. J.F. Ready, Effects of High-power Laser Radiation, Academic Press, New York, 1971

    Google Scholar 

  9. N. Zhang, F. Sun, L. Zhu, C. Verdy, M.P. Planche, H. Liao, C. Dong, and C. Coddet, Characteristics of Cu Film Deposited Using VLPPS, J. Therm. Spray Technol., 2011, 20, p 351-357

    Article  CAS  Google Scholar 

  10. M. Brossa and E. Pfender, Probe Measurements in Thermal Plasma Jets, Plasma Chem. Plasma Process., 1988, 8, p 75-90

    Article  CAS  Google Scholar 

  11. A. Capetti and E. Pfender, Probe Measurements in Argon Plasma Jets Operated in Ambient Argon, Plasma Chem. Plasma Process., 1989, 9, p 329-341

    Article  CAS  Google Scholar 

  12. M. Asmann, A. Wank, H. Kim, J. Heberlein, and E. Pfender, Characterization of the Converging Jet Region in a Triple Torch Plasma Reactor, Plasma Chem. Plasma Process., 2000, 21, p 37-63

    Article  Google Scholar 

  13. T. Kavka, J. Gregor, O. Chumak, and M. Hrabovsky, Effect of Arc Power and Gas Flow Rate on Properties of Plasma Jet under Reduced Pressures, Czech J. Phys., 2004, 54, p 753-758

    Article  CAS  Google Scholar 

  14. A. Blais, B. Jodoin, J.L. Dorier, M. Gindrat, C. Hollenstein, and G. Barbezat, Supersonic Plasma Jet Modelling at Low Pressure Using Recent Advances of the Enthalpy Probe Measurement Technique, Thermal Spray 2004: Advances in Technology and Application, 10-12 May 2004 (Osaka), Verlag für Schweißen und verwandte Verfahren DVS-Verlag, p 758-763

  15. J. Grey, P.F. Jacobs, and M.P. Sherman, Calorimetric Probe for the Measurement of Extremely High Temperatures, Rev. Sci. Instrum., 1962, 33, p 738-741

    Article  Google Scholar 

  16. Enthalpy Probe System Service Manuals for the Principal System Components, TEKNA Plasma System inc., Sherbrooke, 2001

  17. H.D. Steffens and T. Duda, Enthalpy Measurements of Direct Current Plasma Jets Used for ZrO2-Y2O3 Thermal Barrier Coatings, J. Therm. Spray Technol., 2000, 9, p 235-240

    Article  CAS  Google Scholar 

  18. M. Rahmane, G. Soucy, and M.I. Boulos, Analysis of the Enthalpy Probe Technique for Thermal Plasma Diagnostics, Rev. Sci. Instrum., 1995, 66, p 3424-3431

    Article  CAS  Google Scholar 

  19. C.A. Destefani, A.B. Murphy, and E. Siores, Enthalpy Probe Diagnostics of an Atmospheric Pressure Unleaded Petrol Exhaust Gas Microwave Induced Plasma, IEEE Trans. Plasma Sci., 2002, 30, p 1587-1591

    Article  CAS  Google Scholar 

  20. G. Antou, “Améliorations de Revêtements Barrières Thermiques par un Procédé de Refusion Laser in Situ Utilisant un Laser à Diodes,” Doctoral Thesis, 2004

  21. M.Gindrat, “Characterization of Supersonic Low Pressure Plasama Jets,” Doctoral Thesis, 2004

  22. J.D. Mattei, O. Simonin, Software Estet, Manuel Theoretical Version 3.1—Volume 1, Physical Models, Report No. HE 44/92.38B EDF, EDF-NHL, 1992

  23. F. Bourg, S. Pellerin, D. Morvan, J. Amouroux, and J. Chapelle, Study of an Argon-hydrogen RF Inductive Thermal Plasma Torch Used for Silicon Deposition by Optical Emission Spectroscopy, Sol. Energy Mater. Sol. Cells, 2002, 72, p 361-371

    Article  CAS  Google Scholar 

  24. J.-L. Dorier, M. Gindrat, C. Hollenstein, M. Loch, A. Refke, A. Salito, and G. Barbezat, Plasma Jet Properties in a New Spraying Process at Low Pressure for Large Area Thin Film Deposition, Thermal Spray 2001: New Surfaces for a New Millennium, 28-30 May 2001 (Singapore), ASM International, 2001, p 759-764

  25. B. Jodoin, M.Gindrat, J.-L. Dorier, C. Hollenstein, M. Loch, and G. Barbezat, Modelling and Diagnostics of a Supersonic DC Plasma Jet Expanding at Low Pressure, Thermal Spray 2002: International Thermal Spray Conference, Düsseldorf, 2002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Zhang.

Additional information

This article is an invited paper selected from presentations at the 2011 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Thermal Spray 2011: Proceedings of the International Thermal Spray Conference, Hamburg, Germany, September 27-29, 2011, Basil R. Marple, Arvind Agarwal, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and André McDonald, Ed., ASM International, Materials Park, OH, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, N., Sun, F., Zhu, L. et al. Measurement of Specific Enthalpy Under Very Low Pressure Plasma Spray Condition. J Therm Spray Tech 21, 489–495 (2012). https://doi.org/10.1007/s11666-012-9738-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-012-9738-1

Keywords

Navigation