Skip to main content
Log in

Numerical Simulation of the Twin-Wire Arc Spraying Process: Modeling the High Velocity Gas Flow Field Distribution and Droplets Transport

  • Peer-Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

During the twin-wire arc spraying, a high velocity gas stream is used to accelerate the arc-melting materials and propel the droplets toward the substrate surface. This study is aimed at investigating the gas flow formation and droplets transport processes using numerical simulation method. Results from the 3-D gas flow field model show that the distribution of the gas flow velocity on the twin-wire intersection plane is quite different from that on the twin-wire vertical plane. Based on the 3-D model, the convergence amplitude of the high velocity zone in the jet center is improved by modifying the gun head design. It is also observed that a flat substrate existed downstream from the gas nozzle exit results in decreasing close to zero in velocity of the gas jet near the substrate. In addition, the predicted droplet trajectories and velocity distributions exhibited good agreement with experimentally observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

C D :

drag coefficient

C p :

specific heat (J kg−1 K−1)

d :

diameter (m)

\( \bar{d} \) :

mean mass diameter (m)

ε:

dissipation rate of k (m2 s−3)

F D :

drag force factor

h :

enthalpy (J kg−1)

It :

turbulence intensity

κ:

thermal conductivity (W m−1 K−1)

k :

turbulent kinetic energy (m2 s−2)

n :

spreading parameter

p :

pressure (Pa)

Pr :

Prandtl number

ρ:

material density (kg m−3)

Re :

Reynolds number

S :

strain rate magnitude (s−1)

T :

total temperature (K)

τ:

stress tensor component (kg m−1 s−2)

μ:

laminar dynamic viscosity (kg m−1 s−1)

μe :

effective dynamic viscosity (kg m−1 s−1)

μt :

turbulent viscosity (kg m−1 s−1)

u:

velocity component (m s−1)

V :

velocity magnitude (m s−1)

x :

component of Cartesian coordinate (m)

g :

gas

d :

droplet

i, j, k :

Cartesian coordinate direction

References

  1. T. Ba, H.W. Ng, and C.W. Kang, Numerical Simulation of the Plasma Flow and Particle Behavior with Inclusion of Curved Substrates in the Plasma Spray Process, Proceedings of the 4th Asian Thermal Spray Conference, C.J. Li and G.J. Yang, Eds., 2009 (Xi’an, China), 2009, p 219-225

  2. F. Qunbo, W. Lu, and W. Fuchi, 3D Simulation of the Plasma Jet in Thermal Plasma Spraying, J. Mater. Process. Technol., 2005, 166, p 224-229

    Article  Google Scholar 

  3. S. Kamnis and S. Gu, 3-D Modelling of Kerosene-Fuelled HVOF Thermal Spray Gun, Chem. Eng. Sci., 2006, 61, p 5427-5439

    Article  CAS  Google Scholar 

  4. M. Ivosevic, R.A. Cairncross, and R. Knight, 3D Predictions of Thermally Sprayed Polymer Splats: Modeling Particle Acceleration, Heating and Deformation on Impact with a Flat Substrate, Int. J. Heat Mass Transf., 2006, 49, p 3285-3297

    Article  Google Scholar 

  5. A.P. Newbery, T. Rayment, and P.S. Grant, A Particle Image Velocimetry Investigation of In-Flight and Deposition Behavior of Steel Droplets During Electric Arc Sprayforming, Mater. Sci. Eng. A, 2004, 383, p 137-145

    Article  Google Scholar 

  6. N.A. Hussary and J.V.R. Heberlein, Atomization and Particle-Jet Interactions in the Wire-Arc Spraying Process, J. Therm. Spray Technol., 2001, 10, p 604-610

    Article  CAS  Google Scholar 

  7. M. Kelkar and J. Heberlein, Wire-Arc Spray Modeling, Plasma. Chem. Plasma Process., 2002, 22, p 1-25

    Article  CAS  Google Scholar 

  8. M. Kelkar and J. Heberlein, Physics of an Arc in Cross Flow, J. Phys. D Appl. Phys., 2000, 33, p 2172-2182

    Article  CAS  Google Scholar 

  9. I. Gedzevicius, R. Bolot, H. Liao, and C. Coddet, Application of CFD for Wire-Arc Nozzle Geometry Improvement, Thermal Spray 2003: Advancing the Science & Applying the Technology, B.R. Marple, Ed., ASM International, Materials Park, OH, 2003, p 977-980

    Google Scholar 

  10. I. Gedzevicius and A.V. Valiulis, Analysis of Wire Arc Spraying Process Variables on Coatings Properties, J. Mater. Process. Technol., 2006, 175, p 206-221

    Article  CAS  Google Scholar 

  11. R. Bolot, R. Bonnet, G. Jandin et al., Application of CAD to CFD for the Wire Arc Spray Process, Thermal Spray 2001: New Surfaces for a New Millennium, C.C. Berndt, Ed., ASM International, Materials Park, OH, 2001, p 889-894

    Google Scholar 

  12. R. Bolot, M.P. Planche, H. Liao et al., A Three-Dimensional Model of the Wire Arc Spray Process and its Experimental Validation, J. Mater. Process. Technol., 2008, 200, p 94-105

    Article  CAS  Google Scholar 

  13. Y.X. Chen, X.B. Liang, Y. Liu, and B.S. Xu, Numerical Analysis of the Effect of Arc Spray Gun Configuration Parameters on the External Gas Flow, J. Mater. Process. Technol., 2009, 209, p 5924-5931

    Article  CAS  Google Scholar 

  14. Y.X. Chen, X.B. Liang, Y. Liu, J.Y. Bai, and B.S. Xu, Finite Element Modeling of Coating Formation and Transient Heat Transfer in the Electric Arc Spray Process, Int. J. Heat Mass Transf., 2009, 53, p 2012-2021

    Article  Google Scholar 

  15. Y. Zhu, H. Liao, and C. Coddet, Transient Thermal Analysis and Coating Formation Simulation of Thermal Spray Process by Finite Difference Method, Surf. Coat. Technol., 2006, 200, p 4665-4673

    Article  CAS  Google Scholar 

  16. Y. Zhu, H. Liao, and C. Coddet, Transient Thermal Analysis and Coating Formation Simulation of Arc Spray Process, Thermal Spray Connects: Explore its Surfacing Potential, E. Lugscheider, Ed., 2005 (DVS, Düsseldor, DE), 2005, p 1376-1381

  17. A.P. Newbery and P.S. Grant, Large Arc Voltage Fluctuations and Droplet Formation in Electric Arc Wire Spraying, Powder Metall., 2003, 46, p 229-235

    Article  CAS  Google Scholar 

  18. N.A. Hussary, Fluid Dynamics Investigations of Wire Arc Spraying Process, University of Minnesota, Minnesota, 1999

    Google Scholar 

  19. K.M. Djamarani and I.M. Clark, Characterization of Particle Size Based on Fine and Coarse Fractions, Powder Technol., 1997, 93, p 101-108

    Article  CAS  Google Scholar 

  20. S.A. Morsi and A.J. Alexander, An Investigation of Particle Trajectories in Two-Phase Flow Systems, J. Fluid Mech., 1972, 55, p 193-208

    Article  Google Scholar 

  21. M. Ignatiev, V. Senchenko, and V. Dozhdikov, Digital Diagnostic System Based on Advanced CCD Image Sensor for Thermal Spraying Monitoring, Tagungsband Conference Proceedings, E. Lugscheider, Ed., 2002 (DVS, Düsseldorf, DE), 2002, p 72-77

  22. Z. Yin, S. Tao, X. Zhou, and C. Ding, Particle In-Flight Behavior and Its Influence on the Microstructure and Mechanical Properties of Plasma-Sprayed Al2O3 Coatings, J. Eur. Ceram. Soc., 2008, 28, p 1143-1148

    Article  CAS  Google Scholar 

  23. A.P. Newbery, P.S. Grant, and R.A. Neiser, The Velocity and Temperature of Steel Droplets During Electric Arc Spraying, Surf. Coat. Technol., 2005, 195, p 91-101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the priority support by China Natural Science Foundation (51105377, 50905185) and National Basic Research Program (2011CB013400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxiong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Liang, X., Wei, S. et al. Numerical Simulation of the Twin-Wire Arc Spraying Process: Modeling the High Velocity Gas Flow Field Distribution and Droplets Transport. J Therm Spray Tech 21, 263–274 (2012). https://doi.org/10.1007/s11666-011-9723-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-011-9723-0

Keywords

Navigation