Skip to main content
Log in

Simulation of Arc Root Fluctuation in a DC Non-Transferred Plasma Torch with Three Dimensional Modeling

  • Peer-Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

It is well known that the coating quality of plasma spraying is strongly influenced by the instability of jets in the plasma spray, which is due to arc root fluctuation. Three dimensional (3D) unsteady-state modeling was employed in this research to analyze the arc root fluctuation in a DC non-transferred plasma torch. Numerical calculations on the distributions of gas temperature and velocity in the plasma torch were carried out using argon as the plasma gas. The electrical current density and potential were also discussed. The results indicate that the fluctuation of arc inside the plasma torch is mainly induced by the movement of the arc root on the anode surface. The arc root moves downstream with the flow of gas, and simultaneously the arc is bent by electromagnetic force. When the arc bends close enough to the anode boundary, a new arc root is formed somewhere upstream of the current attachment. In this paper the nature of the arc root fluctuation is presented, and also it is demonstrated that the voltage-drop calculated is larger than that measured experimentally because the plasma inside the torch has some deviation from the local thermodynamic equilibrium state hypothesis used in the current study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G.V. Miloshevsky, G.S. Romanov, V.I. Tolkach, and I.Yu. Smurov, Simulation of the Dynamics of Two-Phase Plasma Jet in the Atmosphere. Proceedings of III International Conference on Plasma Physics and Plasma Technology, Minsk, Belarus, September 18-22, 2000, p 244-247

  2. J.P. Trelles, E. Pfender, and J. Heberlein, Multiscale Finite Element Modeling of Arc Dynamics in a DC Plasma Torch, Plasma Chem. Plasma Process., 2006, 26(6), p 557-575

    Article  CAS  Google Scholar 

  3. B. Selvan and K. Ramachandran, Comparisons Between Two Different Three-Dimensional Arc Plasma Torch Simulations, J. Therm. Spray Technol., 2006, 18(5–6), p 846-857

    Google Scholar 

  4. Z. Duan and J. Heberlein, Arc Instabilities in a Plasma Spray Torch, J. Therm. Spray Technol., 2002, 11(1), p 44-51

    Article  Google Scholar 

  5. D. Outcalt, M. Hallberg, G. Yang, J. Heberlein, E. Pfender, and P. Strykowski, Instabilities in Plasma Spray Jets, Thermal Spray 2006: Science, Innovation, and Application B.R. Marple, M.M. Hyland, Y.-C. Lau, R.S. Lima, and J. Voyer, Ed., May 15–18, 2006 (Seattle, Washington), ASM International, 2006, p 803-807

  6. J.F. Coudert, M.P. Planche, and P. Fauchais, Characterization of DC Plasma Torch Voltage Fluctuations, Plasma Chem. Plasma Process., 1996, 16(1), p 211S-227S

    Article  CAS  Google Scholar 

  7. P. Fauchais, Understanding Plasma Spraying, J. Phys. D, 2004, 37(9), p R86-R108

    Article  CAS  Google Scholar 

  8. J.P. Trelles, C. Chazelas, A. Vardelle, and J.V.R. Heberlein, Arc Plasma Torch Modeling, J. Therm. Spray Technol., 2009, 18(5–6), p 728-752

    Article  Google Scholar 

  9. R. Ramasamy and V. Selvarajan, Current-Voltage Characteristics of a Non-Transferred Plasma Spray Torch, Eur. Phys. J. D, 2000, 8(1), p 125-129

    Article  CAS  Google Scholar 

  10. R. Westhoff, A.H. Dilawari, and J. Szekely, A Mathematical Representation of Transport Phenomena Inside a Plasma Torch, Mater. Res. Soc. Symp. Proc., 1991, 199, p 213-219

    Google Scholar 

  11. R. Westhoff and J. Szekely, A Model of Fluid, Heat Flow, and Electromagnetic Phenomena in a Nontransferred Arc Plasma Torch, J. Appl. Phys., 1991, 70(7), p 3455-3466

    Article  CAS  Google Scholar 

  12. H. Peng, Y. Lan, and C. Xi, Modeling of Plasma Jets with Computed Inlet Profiles, Proceedings of the 13th International Symposium on Plasma Chemistry, C.K. Wu, Ed., Peking University Press, Beijing, 1997,

    Google Scholar 

  13. D.A. Scott, P. Kovitya, and G.N. Haddad, Temperatures in the Plume of a DC Plasma Torch, J. Appl. Phys., 1989, 66(11), p 5232-5239

    Article  Google Scholar 

  14. S. Paik, P.C. Huang, J. Heberleinand, and E. Pfender, Determination of the Arc Root Position in a DC Plasma Torch, Plasma Chem. Plasma Process., 1993, 13(3), p 379-397

    Article  CAS  Google Scholar 

  15. H.-P. Li and E. Pfender, Three Dimensional Modeling of the Plasma Spray Process, J. Therm. Spray Technol., 2007, 16(2), p 245-260

    Article  CAS  Google Scholar 

  16. B. Selvan, K. Ramachandran, K.P. Sreekumar, T.K. Thiyagarajan, and P.V. Ananthapadmanabhan, Three-Dimensional Numerical Modeling of an Ar-N2 Plasma Arc Inside a Non-Transferred Torch, Plasma Sci. Technol., 2009, 11(6), p 679-687

    Article  CAS  Google Scholar 

  17. L. Klinger, J.B. Vos, and K. Appert, High-Resolution CFD Simulation of a Plasma Torch in 3 Dimensions, CRPP-REPORT-2003-024, LRP 762, http://infoscience.epfl.ch/record/121307/files/lrp_762_03_hq.pdf, 2003

  18. C. Baudry, A. Vardelle, G. Mariaux, F.C. Delalondre, and F.E. Meillot, Three-Dimensional and Time-Dependent Model of the Dynamic Behavior of the Arc in a Plasma Spray Torch, Thermal Spray 2004: Advances in Technology and Applications, D. von Hofe, Ed., ASM International, Materials Park, 2004, p 717-723

  19. E. Moreau, C. Chazelas, G. Mariaux, and A. Vardelle, Modeling the Restrike Mode Operation of a DC Plasma Spray Torch, J. Therm. Spray Technol., 2006, 15(4), p 524-530

    Article  Google Scholar 

  20. J.P. Trelles, E. Pfender, and J.V.R. Heberlein, Modelling of the Arc Reattachment Process in Plasma Torches, J. Phys. D, 2007, 40(18), p 5635-5648

    Article  CAS  Google Scholar 

  21. J.P. Trelles and J.V.R. Heberlein, Simulation Results of Arc Behavior in Different Plasma Spray Torches, J. Therm. Spray Technol., 2006, 15(4), p 563-569

    Article  Google Scholar 

  22. J.P. Trelles, J.V.R. Heberlein, and E. Pfender, Non-Equilibrium Modelling of Arc Plasma Torches, J. Phys. D, 2007, 40(19), p 5937-5952

    Article  CAS  Google Scholar 

  23. M.I. Boulos and P. Fauchais, Thermal Plasmas: Fundamentals and Applications, Vol. I, Springer, Berlin, 1994

    Google Scholar 

  24. V. Colombo, E. Ghedini, and P. Sanibondi, Thermodynamic and Transport Properties in Non-Equilibrium Argon, Oxygen and Nitrogen Thermal Plasmas, Prog. Nucl. Energy, 2008, 50(8), p 921-933

    Article  CAS  Google Scholar 

  25. S.C. Snyder, G.D. Lassahn, and J.D. Grandy, Direct Determination of Gas Velocity and Gas Temperature in an Atmospheric-Pressure Argon–Hydrogen Plasma Jet, J. Quant. Spectrosc. Radiat. Transf., 2007, 107(2), p 217-225

    Article  CAS  Google Scholar 

  26. M.P. Planche, J.F. Coudert, and P. Fauchais, Velocity Measurements for Arc Jets Produced by a DC Plasma Spray Torch, Plasma Chem. Plasma Process., 1998, 18(2), p 263-283

    Article  CAS  Google Scholar 

  27. J.-L. Dorier, Ch. Hollenstein, A. Salito, M. Loch, and G. Barbezat, Influence of External Parameters on Arc Fluctuations in a F4 DC Plasma Torch Used for Thermal Spraying, Thermal Spray 2000: Surface Engineering via Applied Research, C.C. Berndt, Ed., ASM International, Materials Park, p 37-43

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Huang.

Additional information

This article is an invited paper selected from presentations at the 2011 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Thermal Spray 2011: Proceedings of the International Thermal Spray Conference, Hamburg, Germany, September 27-29, 2011, Basil R. Marple, Arvind Agarwal, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and André McDonald, Ed., ASM International, Materials Park, OH, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, R., Fukanuma, H., Uesugi, Y. et al. Simulation of Arc Root Fluctuation in a DC Non-Transferred Plasma Torch with Three Dimensional Modeling. J Therm Spray Tech 21, 636–643 (2012). https://doi.org/10.1007/s11666-011-9710-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-011-9710-5

Keywords

Navigation