Skip to main content
Log in

Preparation and Microstructure Characterization of Mullite Coatings Made of Mullitized Natural Andalusite Powders

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Natural andalusite powders were heated at high temperature in air allowing mullitization. The mullitized powders were spray-dried and then air plasma sprayed to form mullite coatings. Microstructure and phase composition of the plasma-sprayed mullite coatings were investigated by means of scanning electron microscopy and x-ray diffraction. The effect of spraying power on the microstructure and phase composition of the mullite coatings was investigated. It has been found that spraying power has significant effect on the content of amorphous phase in the mullite coatings. At the same time, good adhesion is reached between the mullite coating and the bound coating (NiCrAlY) and between the bound coating and the substrate. The mullite coating deposited at a spraying power of 22.5 kW is free of cracks. The processes reported here are applicable to preparing mullite coatings used in high-temperature environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X.Q. Cao, R. Vassen, and D. Stoever, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24, p 1-10

    Article  CAS  Google Scholar 

  2. S. Mohsen, A. Abbas, and K. Akira, Microstructural Analysis of YSZ and YSZ/Al2O3 Plasma Sprayed Thermal Barrier Coatings After High Temperature Oxidation, Surf. Coat. Technol., 2008, 202, p 3233-3238

    Article  Google Scholar 

  3. Z.H. Han, B.H. Xu, H.J. Wang, and S.K. Zhou, A Comparison of Thermal Shock Behavior Between Currently Plasma Spray and Supersonic Plasma Spray CeO2–Y2O3-ZrO2 Graded Thermal Barrier Coatings, Surf. Coat. Technol., 2007, 201, p 5253-5256

    Article  CAS  Google Scholar 

  4. S. Saravanan, G.H. Srinivas, V. Jayaram, M. Paulraj, and S. Asokan, Synthesis and Characterization of Y3Al5O12 and ZrO2–Y2O3 Thermal Barrier Coatings by Combustion Spray Pyrolysis, Surf. Coat. Technol., 2008, 202, p 4653-4659

    Article  CAS  Google Scholar 

  5. F. Cipri, C. Bartuli, T. Valente, and F. Casadei, Electromagnetic and Mechanical Properties of Silica-Aluminosilicates Plasma Sprayed Composite Coatings, J. Therm. Spray Technol., 2007, 16(5-6), p 831-838

    Article  CAS  Google Scholar 

  6. K. Kokini, Y.R. Takeuchi, and B.D. Choules, Surface Thermal Cracking of Thermal Barrier Coatings Owing to Stress Relaxation: Zirconia vs Mullite, Surf. Coat. Technol., 1996, 182, p 77-82

    Article  Google Scholar 

  7. U. Steinhauser, W. Braue, J. Göring, B. Kanka, and H. Schneider, A New Concept for Thermal Protection of All-Mullite Composites in Combustion Chambers, J. Eur. Ceram. Soc., 2000, 1(20), p 651-658

    Article  Google Scholar 

  8. K.N. Lee, D.S. Fox, J.I. Eldridge, D. Zhu, R.D. Robinson, N.P. Bansal, and R.A. Miller, Upper Temperature Limit of Environmental Barrier Coatings Based on Mullite and BSAS, J. Am. Ceram. Soc., 2003, 86(8), p 1299-1306

    Article  CAS  Google Scholar 

  9. H. Schneider, J. Schreuer, and B. Hildmann, Structure and Properties of Mullite—A Review, J. Eur. Ceram. Soc., 2008, 28, p 329-344

    Article  CAS  Google Scholar 

  10. D.R. Treadwell, D.M. Dabbs, and I.A. Aksay, Mullite (3Al2O3–2SiO2) Synthesis with Aluminosiloxanes, Chem. Mater., 1996, 8, p 2056-2060

    Article  CAS  Google Scholar 

  11. A. Juliana, Mullite Ceramics: Its Properties, Structure, and Synthesis, J. Tek. Mesin, 2005, 7(1), p 1-10

    Google Scholar 

  12. B.H. Robert, J.P. Horst, and W. Richard, Plasma-Sprayed 2:1-Mullite Coatings Deposited on Aluminium Substrates, Eur. J. Miner., 2007, 19, p 281-291

    Article  Google Scholar 

  13. J.G. Fisher, K. Chang, P.F. James, P.F. Messer, and H.A. Davies, Ceramic Flake Formation in the Aluminosilicate System by Plasma Spraying, J. Mater. Sci., 2005, 40, p 1625-1632

    Article  CAS  Google Scholar 

  14. W. Elizabeth, P. Christopher, T. Rodney, D. Graeme, and T. Thomas, Design of 7 wt.% Y2O3-ZrO2/Mullite Plasma-Sprayed Composite Coatings for Increased Creep Resistance, J. Eur. Ceram. Soc., 2007, 27, p 4675-4683

    Article  Google Scholar 

  15. P. Ramaswamy, S. Seetharamy, K.B.R. Varma, and K.J. Rao, Thermal Shock Characteristics of Plasma Sprayed Mullite Coatings, J. Therm. Spray Technol., 1998, 7(4), p 497-504

    Article  CAS  Google Scholar 

  16. G. Di Girolamo, C. Blasi, L. Pilloni, and M. Schioppa, Microstructural and Thermal Properties of Plasma Sprayed Mullite Coatings, Ceram. Int., 2010, 36, p 1389–1395

    Google Scholar 

  17. J.F. Shackelford, R.H. Doremus, Ceramic and Glass Materials: Structure, Properties and Processing, Springer, 2008

  18. M.L. Bouchetou, J.P. Ildefonse, J. Poirier, and P. Daniellou, Mullite Grown from Fired Andalusite Grains: The Role of Impurities and of the High Temperature Liquid Phase on the Kinetics of Mullitization and Consequences on Thermal Shocks Resistance, Ceram. Int., 2005, 31, p 999-1005

    Article  CAS  Google Scholar 

  19. J.P. Ildefonse, V. Gabis, and F. Cesbron, Mullitization of Andalusite in Refractory Bricks, Key Eng. Mater., 1997, 132-136, p 1798-1801

    Article  CAS  Google Scholar 

  20. A. Hülsmann, M. Schmücker, W. Mader, and H. Schneider, The Transformation of Andalusite to Mullite and Silica: Part II, Transformation Mechanisms in [100] and [010] Directions, Am. Mineral., 2000, 85, p 987-992

    Google Scholar 

  21. M. Schmucker, H. Schneider, M. Poorteman, F. Cambier, and R. Meinhold, Constitution of Mullite Glasses Produced by Ultra-Rapid Quenching of Plasma-Sprayed Melts, J. Eur. Ceram. Soc., 1995, 15, p 1201-1205

    Article  Google Scholar 

  22. C. Cano, E. Garcia, A.L. Fernandes, M.I. Osendi, and P. Miranzo, Mullite/ZrO2 Coatings Produced by Flame Spraying, J. Eur. Ceram. Soc., 2008, 28, p 2191-2197

    Article  CAS  Google Scholar 

  23. X.Q. Cao, Thermal Barrier Coatings Materials, Science Publications, China, 2007, p 161-162

    Google Scholar 

  24. K.N. Lee, Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics, Trans. ASME, 2000, 122, p 632-636

    Article  CAS  Google Scholar 

  25. J.O. Berghaus and B.R. Marple, High-Velocity Oxy-Fuel (HVOF) Suspension Spraying of Mullite Coatings, J. Therm. Spray Technol., 2008, 17(5-6), p 671-678

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is financially supported by the National Natural Science Foundation of China (Grant No. 50421502) and the Ministry of Science and Technology of China (project of “973” Plan; grant No. 2007CB607601). The authors appreciate the helpful comments of the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, Y., Liu, G., Zhao, X. et al. Preparation and Microstructure Characterization of Mullite Coatings Made of Mullitized Natural Andalusite Powders. J Therm Spray Tech 20, 479–485 (2011). https://doi.org/10.1007/s11666-010-9536-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-010-9536-6

Keywords

Navigation