Skip to main content
Log in

Modeling the Influence of Injection Modes on the Evolution of Solution Sprays in a Plasma Jet

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Solution precursor plasma spraying (SPPS) is a novel technology with great potential for depositing finely structured ceramic coatings with nano- and sub-micrometric features. The solution is injected into the plasma jet either as a liquid stream or gas atomized droplets. Solution droplets or the stream interact with the plasma jet and break up into fine droplets. The solvent vaporizes very fast as the droplets travel downstream. Solid particles are finally formed, and the particle are heated up and accelerated to the substrate to generate the coating. The deposition process and the properties of coatings obtained are extremely sensitive to the process parameters, such as torch operating conditions, injection modes, injection parameters, and substrate temperatures. This article numerically investigates the effect of injection modes, a liquid stream injection and a gas-blast injection, on the size distribution of injected droplets. The particle/droplet size, temperature, and position distributions on the substrate are predicted for different injection modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Karthikeyan, C.C. Berndt, S. Reddy, J.Y. Wang, A.H. King, and H. Herman, Nanomaterial Deposits Formed by DC Plasma Spraying of Liquid Feedstocks, J. Am. Ceram. Soc., 1998, 81(1), p 121-128

    Article  CAS  Google Scholar 

  2. N.P. Padture, K.W. Schlichting, T. Bhatia, A. Ozturk, B.M. Cetegen, E.H. Jordan, and M. Gell, Towards Durable Thermal Barrier Coatings with Novel Microstructures Deposited by Solution-precursor Plasma Spray, Acta Mater., 2001, 49(12), p 2251-2257

    Article  CAS  Google Scholar 

  3. L. Xie, X. Ma, A. Ozturk, E.H. Jordan, N.P. Padture, B.M. Cetegen, D. Xiao, and M. Gell, Processing Parameter Effects on Solution Precursor Plasma Spray Process Spray Patterns, Surf. Coat. Technol., 2004, 183(1), p 51-61

    Article  CAS  Google Scholar 

  4. Y. Shan, Y. Wang, and T. Coyle, Analysis of the Deposition Mechanism in the Solution Precursor Plasma Spraying using Numerically Predicted Particle Conditions, Thermal Spray Crossing Borders, Proceedings of ITSC2008, E. Lugscheider, Ed., DVS-Verlag, Düsseldorf, Germany, 2008, CD-ROM

  5. Y. Shan, T. Coyle, and J. Mostaghimi, 3D Modeling of Transport Phenomena and the Injection of the Solution Droplets in the Solution Precursor Plasma Spraying, J. Therm. Spray Tech., 2007, 16(5-6), p 736-743

    Article  CAS  ADS  Google Scholar 

  6. J. Fazilleau, C. Delbos, V. Rat, J.F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying, Part 1: Suspension Injection and Behavior, Plasma. Chem. Plasma Process., 2006, 26(2), p 371-391

    Article  CAS  Google Scholar 

  7. S. Basu, E.H. Jordan, and B.M. Cetegen, Fluid Mechanics and Heat Transfer of Liquid Precursor Droplets Injected into High-temperature Plasmas, J. Therm. Spray Tech., 2008, 17(1), p 60-72

    Article  ADS  Google Scholar 

  8. Y. Shan, T. Coyle, and J. Mostaghimi, Numerical Simulation of Droplet Breakup and Collision in the Solution Precursor Plasma Spraying, J. Therm. Spray Tech., 2007, 16(5-6), p 698-704

    Article  CAS  ADS  Google Scholar 

  9. L. Xie, X. Ma, E. Jordan, N. Padture, D. Xiao, and M. Gell, Identification of Coating Deposition Mechanisms in the Solution-precursor Plasma-spray Process Using Model Spray Experiment, Mater. Sci. Eng. A, 2003, 362, p 204-212

    Article  CAS  Google Scholar 

  10. L. Xie, E.H. Jordan, N.P. Padture, and M. Gell, Phase and Micro-structural Stability of Solution Precursor Plasma Sprayed Thermal Barrier Coatings, Mater. Sci. Eng. A, 2004, 381(1-2), p 189-195

    Article  CAS  Google Scholar 

  11. Y. Wang and T. Coyle, Solution Precursor Plasma Spray of Nickel-Yittia Stabilized Zirconia Anodes for Solid Oxide Fuel Cell Application, J. Therm. Spray Tech., 2007, 16(5-6), p 898-904

    Article  CAS  ADS  Google Scholar 

  12. C. Marchand, C. Chazelas, G. Mariaux, and A. Vardelle, Liquid Precursor Plasma Spraying: Modeling the Interactions Between the Transient Plasma Jet and the Droplets, J. Therm. Spray Tech., 2007, 16(5-6), p 705-712

    Article  CAS  ADS  Google Scholar 

  13. P. Fauchais, R. Etchart-Salas, V. Rat, J.F. Coudert, N. Caron, and K. Wittmann-Ténèze, Parameters Controlling Liquid Plasma Spraying: Solutions, Sols, or Suspensions, J. Therm. Spray Tech., 2008, 17(1), p 31-59

    Article  CAS  ADS  Google Scholar 

  14. S.A. Morsi and A.J. Alexander, An Investigation of Particle Trajectories in Two-phase Flow Systems, J. Fluid Mech., 1972, 55, p 193-208

    Article  MATH  ADS  Google Scholar 

  15. K.K.Y. Kuo, Principles of Combustion, John Wiley and Sons, New York, 1986

    Google Scholar 

  16. W. Ranz, Some Experiments on Orifice Sprays, Can. J. Chem. Eng., 1958, 36, p 175-191

    CAS  Google Scholar 

  17. P. Wu, L. Tseng, and G. Faeth, Primary Breakup in Gas/Liquid Mixing Layers for Turbulent Liquids, Atomiz. Sprays, 1995, 2, p 295-317

    Google Scholar 

  18. A.H. Lefebvre, Atomization and Sprays, Hemisphere Publishing Corporation, New York, 1989

    Google Scholar 

  19. R. Reitz, Mechanisms of Atomization Processes in High-pressure Vaporizing Sprays, Atomiz. Spray Technol., 1987, 3, p 309-337

    CAS  ADS  Google Scholar 

  20. D. Schmidt, I. Nouar, P. Senecal, C. Rutland, J. Martin, and R. Reitz, Pressure Swirl Atomization in the Near Field, SAE Paper 01-0496, SAE, 1999

  21. Fluent Inc., Fluent V6.2manual, Lebanon, NH, USA, 2005

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of China (No. 50706027), the Innovation Program of Shanghai Municipal Education Commission (No. 09YZ206), and the Shanghai Leading Academic Discipline Project (No. J50501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Shan.

Additional information

This article is an invited paper selected from presentations at the 2009 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Expanding Thermal Spray Performance to New Markets and Applications: Proceedings of the 2009 International Thermal Spray Conference, Las Vegas, Nevada, USA, May 4-7, 2009, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, Y., Coyle, T.W. & Mostaghimi, J. Modeling the Influence of Injection Modes on the Evolution of Solution Sprays in a Plasma Jet. J Therm Spray Tech 19, 248–254 (2010). https://doi.org/10.1007/s11666-009-9434-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-009-9434-y

Keywords

Navigation