Skip to main content
Log in

Better Quality Control: Stochastic Approaches to Optimize Properties and Performance of Plasma-Sprayed Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Statistical design of experiment (SDE) methodology applied to design and performance testing of plasma-sprayed coatings follows an evolutionary path, usually starting with classic multiparameter screening designs (Plackett-Burman), and progressing through factorial (Taguchi) to limited response surface designs (Box-Behnken). Modern designs of higher dimensionality, such as central composite and D-optimal designs, will provide results with higher predictive power. Complex theoretical models relying on evolutionary algorithms, and application of artificial neuronal networks (ANNs) and fuzzy logic control (FLC) allow estimating the behavior of the complex plasma spray environment through validation either by key experiments or first-principle calculations. In this review, paper general principles of SDE will be discussed and examples be given that underscore the different powers of prediction of individual statistical designs. Basic rules of ANN and FLC will be briefly touched on, and their potential for increased reliability of coating performance through stringent quality control measures assessed. Salient features will be reviewed of studies performed to optimize thermal coating properties and processes reported in the pertinent literature between 2000 and the present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Note that the factorial designs are considered to have a "cuboidal" or "hypercube" factor space whereas the true response surface designs have a "spherical" factor space.

  2. These linguistic terms are at least semantically akin to ‘discrete’ variables in the much less involved screening designs of Plackett-Burman type.

  3. It should be mentioned that adhesion of plasma-sprayed coatings is not just a function of coating thickness which controls the residual stress level, but other factors such as splat cohesion, substrate roughness, temperature of the substrate, properties of the bond coats, level of impurities and degree of oxidation play likewise important roles.

References

  1. S. Bisgaard, Optimizing Thermal Spray Processes—Going Beyond Taguchi Methods, Proc. 3rd NTSC, Long Beach, CA, May 20-25, 1990, p 661-668

  2. R.B. Heimann, Plasma Spray Coating: Principles and Applications, 2nd ed., Wiley-VCH, Weinheim, 2008

    Google Scholar 

  3. C. Pierlot, L. Pawlowski, M. Bigan, and P. Chagnon, Design of Experiments in Thermal Spraying, Surf. Coat. Technol., 2008, 202, p 4483-4490

    Article  CAS  Google Scholar 

  4. G. Pouskouleli and T.A. Wheat, Total Quality Management (TQM): Recipe for Survival, Transactions 17th CUICAC Workshop ‘Ceramic Coatings—A Solution Towards Reducing Wear and Corrosion, R.B. Heimann, Ed., 2 Oct, Laval University, 1991

  5. R.L. Plackett and J.P. Burman, The Design of Optimum Multifactorial Experiments, Biometrika, 1946, 33(4), p 305-325

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Arcondéguy, G. Gasgnier, G. Montavon, B. Pateyron, A. Denoirjean, A. Grimaud, and C. Huguet, Effects of Spraying Parameters onto Flame-Sprayed Glaze Coating Structures, Surf. Coat. Technol., 2008, 202(18), p 4444-4448

    Article  CAS  Google Scholar 

  7. F. Yates, “The Design and Analysis of Factorial Experiments,” Techn. Comm. 35, Imperial Bureau Soil Sci., Harpenden, UK, 1937

  8. J.S. Hunter, The Inverse Yates Algorithm, Technometrics, 1966, 8, p 177-183

    Article  Google Scholar 

  9. U.V. Diccar, “Plasma Spray Coatings for Polymer Composites,” Master Thesis, Wichita State University, December 2006

  10. E. Perez,“Development of APS MCrAlY Dense Bond Coats,” Report, University of Central Florida, 2006. www.clemson.edu/scies/UTSR/FellowPerezSUM6-2006.pdf

  11. G.E.P. Box and J.S. Hunter, The 2k-p Fractional Factorial Designs, Technometrics, 1961 3(3), p 311-331, 449-458

    Google Scholar 

  12. M. Erne,“Optimierung der Dichte, Dicke und Oberflächenrauheit APS-gespritzter Chrom- oxid-Korrosionsschutzschichten,” Unpublished 4th Year Thesis, Technische Universität Bergakademie Freiberg, 2004 (http://www.wissen24.de/vorschau/25257.html)

  13. B.D. Sartwell, K.O. Legg, J. Schell, J. Sauer, P. Natishan, D. Dull, J. Falkowski, P. Bretz, J. Devereaux, C. Edwards, and D. Parker, “Validation of HVOF WC/Co Thermal Spray Coatings as a Replacement for Hard Chrome Plating on Aircraft Landing Gear,” Naval Research Lab., Report No. NRL/MR/6170-04-8762, 2004, 280 pp

  14. G. Taguchi and S. Konishi, Taguchi Methods: Orthogonal Arrays and Linear Graphs, ASI Press, Dearborn, MI, 1987

    Google Scholar 

  15. D.C. Montgomery, Design and Analysis of Experiments, Wiley, New York, 1991

    MATH  Google Scholar 

  16. P. Saravanan, V. Selvarajan, M.P. Srivastava, S.V. Joshi, and G. Sundararajan, Influence of Spraying Variables on Structure and Properties of Plasma Sprayed Alumina Coatings, Brit. Ceram. Trans, 2000, 99(6), p 241-247

    Article  CAS  Google Scholar 

  17. P. Saravanan, V. Selvarajan, D. Srinivasa Rao, S.V. Joshi, and G. Sundararajan, Application of Taguchi Method to the Optimization of Detonation Spraying Process, Mater. Manufact. Process., 2000, 15(1), p 139-153

    Article  CAS  Google Scholar 

  18. P. Saravanan, V. Selvarajan, M.P. Srivastava, D.S. Rao, S.V. Joshi, and G. Sundararajan, Study of Plasma- and Detonation Gun-Sprayed Alumina Coatings Using Taguchi Experimental Design, J. Thermal Spray Technol., 2000, 9(4), p 505-512

    ADS  CAS  Google Scholar 

  19. P. Saravanan, V. Selvarajan, S.V. Joshi, and G. Sundararajan, Experimental Design and Performance Analysis of Alumina Coatings Deposited by a Detonation Spray Process, J. Phys. D Appl. Phys., 2001, 34, p 131-140

    Article  ADS  CAS  Google Scholar 

  20. A. Kucuk, C.C. Berndt, U. Senturk, and R.S. Lima, Characterization of Mechanical Properties of TBCs via a Taguchi Experimental Design, Proc. 1st ITSC, Thermal Spray Surface Engineering via Applied Research, Montreal, QC, Canada, May 9-11, 2000, p 1211-1217

  21. M. Gell, L. Xie, X. Ma, E.H. Jordan, and N.P. Padhure, Highly Durable Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2004, 177-178, p 97-102.

    Article  CAS  Google Scholar 

  22. J. Cizek, K.A. Khor, and Z. Prochazka, Influence of Spraying Conditions on Thermal and Velocity Properties of Plasma Sprayed Hydroxyapatite, Mater. Sci. Eng. C, 2007, 27(2), p 340-344

    Article  CAS  Google Scholar 

  23. H.K. Kim, J.W. Jang, and C.H. Lee, Surface Modification of Implant Materials and its Effect on Attachment and Proliferation of Bone Cells, J. Mater. Sci. Mater. Med., 2004, 15(7), p 825-830

    Article  PubMed  CAS  Google Scholar 

  24. G. Gibbons and R. Hansell, Down-Selection and Optimization of Thermal-Sprayed Coatings for Aluminum Mould Tool Protection and Upgrade, J. Thermal Spray Technol., 2006, 15(3), p 340-347

    Article  ADS  CAS  Google Scholar 

  25. F. Tarasi, M. Medraj, A. Dolatabadi, J. Oberste-Berghaus, and C. Moreau, Effective Parameters in Axial Injection Suspension Plasma Spray Process of Alumina-Zirconia Ceramics, J. Thermal Spray Technol., 2008, 17(5-6), p 685-691

    Article  ADS  CAS  Google Scholar 

  26. R.B. Heimann, D. Lamy, and T. Sopkow, Optimization of Vacuum Plasma Arc Spray Parameters of 88WC12Co Alloy Coatings Using a Statistical Multifactorial Design Matrix, J. Can. Ceram. Soc., 1990, 59(3), p 49

    Google Scholar 

  27. J. Grum and Z. Bergant, The Optimisation of Powder Flame-Spraying Parameters Using a Taguchi Method, Int. J. Microstruct. Mater. Prop., 2008, 3(4-5), p 682-700

    Article  CAS  Google Scholar 

  28. G. Bertrand, P. Bertrand, P. Roy, C. Rio, and R. Mevrel, Low Conductivity Plasma Sprayed Thermal Barrier Coating Using Hollow PSZ Spheres: Correlation Between Thermophysical Properties and Microstructure, Surf. Coat. Technol., 2008, 202(10), p 1994-2001

    Article  CAS  Google Scholar 

  29. G.E.P. Box and D.W. Behnken, Some New Three Level Designs for the Study of Quantitative Variables, Technometrics, 1960, 2, p 455-475

    Article  MathSciNet  Google Scholar 

  30. F. Cipri, C. Bartuli, T. Valente, and F. Casadei, Electromagnetic and Mechanical Properties of Silica-Aluminosilicates Plasma Sprayed Composite Coatings, J. Thermal Spray Technol., 2007, 16(5-6), p 831-838

    Article  ADS  CAS  Google Scholar 

  31. B.T. Lin, M.D. Jean, and J.H. Chou, Using Response Surface Methodology for Optimizing Deposited Partially Stabilized Zirconia in Plasma Spraying, Appl. Surf. Sci., 2007, 253(6), p 3254-3262

    Article  ADS  CAS  Google Scholar 

  32. A. Schuppert and A. Ohrenberg, “Method and Computer for Experimental Design,” EP1499930, 2005

  33. G.E.P. Box and K.B. Wilson, On the Experimental Attainment of Optimum Conditions, J. Roy. Statist. Soc., 1951, 13, p 1-45

    MathSciNet  Google Scholar 

  34. J. Bohm, M. Bohm, and R.B. Heimann, Voronoi Polyhedra: A Useful Tool to Determine the Symmetry and Bravais Class of Crystal Lattices, Cryst. Res. Technol., 1996, 31(8), p 1069-1075

    Article  CAS  Google Scholar 

  35. J. Zimmermann, “Untersuchungen zur Haftfestigkeit und Rauheit plasmagespritzter Cr2O3-Schichten,” Unpublished 4th Year Thesis, Technische Universität Bergakademie Freiberg, 2000

  36. G. Reisel and R.B. Heimann, Correlation Between Roughness of Plasma-Sprayed Chromium Oxide Coatings and Powder Grain Size Distribution: A Fractal Approach, Surf. Coat. Technol., 2004, 183, p 215-221

    Article  CAS  Google Scholar 

  37. Y. Wang and T.W. Coyle, Optimization of Solution Precursor Plasma Spray Process by Statistical Design of Experiment, J. Thermal Spray Technol., 2008, 17(5-6), p 692-699

    Article  ADS  CAS  Google Scholar 

  38. H.O. Hartley, Smallest Composite Designs for Quadratic Response Surfaces, Biometrics, 1959, 15(4), p 611-624

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Yudee, A. Sopadang, S. Wirojanupatump, and S. Jiansirisomboon, Aluminium-12wt% Silicon Coating Prepared by Thermal Spraying Technique: Part 1. Optimization of Spray Condition Based on a Design of Experiments, Songklanakarin J. Sci. Technol., 2006, 28(2), p 431-439

    Google Scholar 

  40. B.T. Neyer, A D-Optimality-Based Sensitivity Test, Technometrics, 1994, 36(1), p 61-70

    Article  Google Scholar 

  41. C. Pumplün, S. Rüping, K. Morik, and C. Weihs, “D-Optimal Plans in Observational Studies,” Report SFB 475 (Reduction of Complexity in Multivariate Data Structures), University Dortmund, Germany, 2005

  42. M. Moldovan, C.M. Weyant, D.L. Johnson, and K.T. Faber, Tantalum Oxide Coatings as Candidate Environmental Barriers, J. Thermal. Spray Technol., 2004, 13(1), p 51-56

    Article  ADS  CAS  Google Scholar 

  43. H.S. Haller, Experimental Design Optimizer (Software Manual), Harold S. Haller & Co, Cleveland, OH, 1999

  44. F. Azarmi, T.W. Coyle, and J. Mostaghimi, Optimization of Atmospheric Plasma Spray Process Parameters Using a Design of Experiment for Alloy 625 Coatings, J. Thermal. Spray Technol., 2008, 17(1), p 144-155

    Article  ADS  CAS  Google Scholar 

  45. J.F. Li, H. Liao, B. Normand, C. Codier, G. Maurin, J. Foct, and C. Coddet, Uniform Design Method for Optimization of Process Parameters of Plasma-Sprayed TiN Coatings, Surf. Coat. Technol., 2003, 176(1), p 1-13

    Article  CAS  Google Scholar 

  46. K.T. Fang and Y. Wang, Number-Theoretic Methods in Statistics, Chapman and Hall, London, 1994

    MATH  Google Scholar 

  47. J.F. Li, H.L. Liao, C.X. Ding, and C. Coddet, Optimizing the Plasma Spray Process Parameters of Yttria Stabilized Zirconia Coatings Using a Uniform Design of Experiments, J. Mater. Proc. Technol., 2005, 160(1), p 34-42

    Article  CAS  Google Scholar 

  48. J.R. Mawdsley, Y.J. Su, K.T. Faber, and T.F. Bernecki, Optimization of Small-Particle Plasma-Sprayed Alumina Coatings Using Designed Experiments, Mater. Sci. Eng. A, 2001, 308, p 189-199

    Article  Google Scholar 

  49. S. Sampath, X. Jiang, A. Kulkarni, J. Matejicek, D.L. Gilmore, and R.A. Neiser, Development of Process Maps for Plasma Spray: Case Study for Molybdenum, Mater. Sci. Eng. A, 2003, 348, p 54-66

    Article  CAS  Google Scholar 

  50. A. Vaidya, T. Streibl, L. Li, S. Sampath, O. Kovarik, and R. Greenlaw, An Integrated Study of Thermal Spray Process-Structure-Property Correlations: A Case Study for Plasma Sprayed Molybdenum Coatings, Mater. Sci. Eng. A, 2005, 403(1-2), p 191-204

    Article  CAS  Google Scholar 

  51. X. Jiang, J. Matejicek, A. Kulkarni, H. Herman, S. Sampath, D. Gilmore, and R. Neiser, “Process Maps for Plasma Spray Part II: Deposition and Properties,” Report SAND2000-0802c, 2000, p 1-7

  52. E. Turunen, T. Varis, T.E. Gustavson, J. Keskinen, T. Fält, and S.P. Hannula, Parameter Optimization of HVOF Sprayed Nanostructured Alumina and Alumina-Nickel Composite Coatings, Surf. Coat. Technol., 2006, 200(16-17), p 4987-4994

    Article  CAS  Google Scholar 

  53. W. Zhang and S. Sampath, A Universal Method for Representation of In-Flight Particle Characteristics in Thermal Spray Processes, J. Thermal Spray Technol., 2009, 18(1), p 23-24

    Article  ADS  CAS  Google Scholar 

  54. A. Vaidya, V. Srinivasan, T. Streibl, M. Friis, W. Chi, and S. Sampath, Process Maps for Plasma Spraying of Yttria-Stabilized Zirconia: An Integrated Approach to Design, Optimization and Reliability, Mater. Sci. Eng. A, 2008, 497(1-2), p 239-253

    Article  CAS  Google Scholar 

  55. J.C. Fang, H.P. Zeng, W.J. Wu, Z.Y. Zhao, and L. Wang, Prediction of In-Flight Particle Behaviors in Plasma Spraying, J. Achiev. Mater. Manufact. Eng., 2006, 18(1-2), p 283-286

    Google Scholar 

  56. H.B. Xiong, L.L. Zheng, and T. Streibl, A Critical Assessment of Particle Temperature Distribution During Plasma Spraying: Numerical Studies for YSZ, Plasma Chem., Plasma Proc., 2006, 26(1), p 53-72

    Article  CAS  Google Scholar 

  57. B. Liu, T. Zhang, and D.T. Gawne, Computational Analysis of the Influence of Process Parameters on the Flow Field of a Plasma Jet, Surf. Coat. Technol., 2000, 132(2-3), p 202-216

    Article  CAS  Google Scholar 

  58. I. Ahmed and T.L. Bergman, Optimization of Plasma Spray Processing Parameters for Deposition on Nanostructured Powders for Coating Formation, J. Fluid Eng., 2006, 128(2), p 394-401

    Article  CAS  Google Scholar 

  59. C. Le Bot and E. Arquis, Numerical Study of the Solidification of Successive Thick Metal Layers, Int. J. Thermal Sci., 2009, 48(2), p 412-420

    Article  CAS  Google Scholar 

  60. S. Hossainpour and A.R. Binesh, A CFD Study of Sensitive Parameter Effects on the Combustion in a High Velocity Oxygen Fuel Thermal Spray Gun, Proc. World Acad. Sci. Eng. Technol., 2008, 31, p 213-220

    Google Scholar 

  61. R. Cesaretti, High Throughput Screening of Coatings, Adhesive, Sealants and Elastomer (CASE) Formulations, Symyx Global Symp., Philadelphia, May 12-14, 2009, p 1

  62. P. Seyffarth, A. Scharff, F.W. Bach, L.A. Josefiak, B. Bouaifi, and T. Schlennstedt, SprayWare-Beratungssystem für den Oberflächenschutz durch thermisches Spritzen, Schweissen und Schneiden, 2002, 54, p 192-199

    CAS  Google Scholar 

  63. F.I. Trifa, G. Montavon, and C. Coddet, Model-Based Expert System for Design and Simulation of APS Coatings, J. Thermal Spray Technol., 2007, 16(1), p 128-139

    Article  ADS  CAS  Google Scholar 

  64. S. Guessasma, G. Montavon, P. Gougeon, and C. Coddet, Designing Expert Systems Using Neural Computation in View of the Control of Plasma Spray Processes, Mater. Design, 2003, 24(7), p 497-502

    Article  CAS  Google Scholar 

  65. Y. Siradeghyan, A. Zakarian, and P. Mohanty, Entropy-Based Associative Classification Algorithm for Mining Manufacturing Data, Int. J. Comput. Integr. Manufact., 2008, 21(7), p 825-838

    Article  Google Scholar 

  66. C. Coddet, On the Use of Auxiliary Systems During Thermal Spraying, Surf. Coat. Technol., 2006, 201(5), p 1969-1974

    Article  CAS  Google Scholar 

  67. D.D. Frey, F. Engelhardt, and E.M. Greitzer, A Role for “One-Factor-at-a-Time” Experimentation in Parameter Design, Res. Eng. Design, 2003, 14, p 65-74

    Google Scholar 

  68. X. Li, N. Sudarsanam, and D.D. Frey, Regularities in Data from Factorial Experiments, Complexity, 2006, 11(5), p 32-45

    Article  Google Scholar 

  69. S. Guessasma, G. Montavon, and C. Coddet, Modeling of the APS Plasma Spray Process Using Artificial Neural Networks: Basis, Requirements and an Example, Comput. Mater. Sci., 2004, 29(3), p 315-333

    Article  Google Scholar 

  70. M.M. Nelson and W.T. Illingworth, A Practical Guide to Neural Nets, 3rd ed., Addison-Wesley, Reading, MA, 1991

    Google Scholar 

  71. J.B. Tenenbaum and W.T. Freeman, Separating Style and Content, Proc. Advanc. Neural Process Information Systems, M.C. Mozer, M.I. Jordan, and T. Petsche, Ed., Vol. 9, Part IV, The MIT Press, Cambridge, MA, USA, 1997, p 662–668

  72. S. Guessasma and C. Coddet, Neural Computation Applied to APS Spray Process: Porosity Analysis, Surf. Coat. Technol., 2005, 197, p 85-92

    Article  CAS  Google Scholar 

  73. W. McCulloch and W. Pitts, A Logical Calculus of Ideas Immanent in Nervous Activity, Bull. Math. Biophys., 1943, 7, p 115-133

    Article  MathSciNet  Google Scholar 

  74. L. Wang, J.C. Fang, Z.Y. Zhao, and H.P. Zeng, Application of Backward Propagation Network for Forecasting Hardness and Porosity of Coatings by Plasma Spraying, Surf. Coat. Technol., 2007, 201(9-11), p 5085-5089

    Article  CAS  Google Scholar 

  75. D. Patterson, Artificial Neural Networks, Prentice Hall, Singapore, 1996

    MATH  Google Scholar 

  76. S. Guessasma, G. Montavon, P. Gougeon, and C. Coddet, On the Neural Network Concept to Describe the Thermal Spray Deposition Process: Correlation Between In-Flight Particles Characteristics and Processing Parameters, Proc. ITSC 2002, E. Lugscheider and P.A. Kammer, Ed., DVS-Verlag, Düsseldorf, Germany, 2002, p 453-458

  77. S. Guessasma, G. Montavon, and C. Coddet, Plasma Spray Process Modeling Using Artificial Neural Networks: Application to Al2O3-TiO2 (13% by Weight) Ceramic Coating Structure, J. Phys. IV France, 2004, 120, p 363-370

    CAS  Google Scholar 

  78. S. Guessasma, Z. Salhi, G. Montavon, P. Gougeon, and C. Coddet, Artificial Intelligence Implementation in the APS Process Diagnostics, Mater. Sci. Eng. B, 2004, 110(3), p 285-295

    Article  CAS  Google Scholar 

  79. S. Guessasma, M. Bounazet, and P. Nardin, Neural Computation Analysis of Alumina-Titania Wear Resistance Coating, Int. J. Refract. Met. Hard Mater., 2006, 24(3), p 240-246

    Article  CAS  Google Scholar 

  80. A.F. Kanta, G. Montavon, M.P. Planche, and C. Coddet, Artificial Intelligence Computation to Establish Relationships Between APS Process Parameters and Alumina-Titania Coating Properties, Plasma Chem. Plasma Proc., 2008, 28, p 249-262

    Article  CAS  Google Scholar 

  81. M.D. Jean, B.T. Lin, and J.H. Chou, Application of an Artificial Neural Network for Simulating Robust Plasma-Sprayed Zirconia Coatings, J. Am. Ceram. Soc., 2008, 91(5), p 1539-1547

    Article  CAS  Google Scholar 

  82. G. Zhang, S. Guessasma, H. Liao, C. Coddet, and J.M. Bordes, Investigation of Friction and Wear Behaviour of SiC-Filled PEEK Coating Using Artificial Neural Networks, Surf. Coat. Technol., 2006, 200(8), p 2610-2617

    Article  CAS  Google Scholar 

  83. K. Bobzin, F. Ernst, J. Zwick, K. Richardt, R. Schmitt, and J. Dören, Increase of Process Robustness Through Offline Process Control and Noise Factor Influence Reduction, Proc. 2007 Intern. Thermal Spray Conf. (ISTC), Beijing, China, May 14-16, 2007, p 855-859

  84. J. Dören, “Quality Management and Neural Networks: An Approach for Predictional Control of Thermal Spray Processes,” Ph.D. Dissertation, Faculty of Mechanical Engineering, RWTH Aachen, Germany, 2007. URL: http://darwin.bth.rwth-aachen.de/opus3/volltexte/2007/1986

  85. S. Guessasma, G. Montavon, and C. Coddet, Neural Networks, Design of Experiments and Other Optimization Methodologies to Quantify Parameter Dependence of Atmospheric Plasma Spraying, Thermal Spray 2003: Advancing The Science & Applying the Technology, C. Moreau and B. Marple, Ed., Orlando, FL, May 5-8, 2003, p 939-948

  86. A.F. Kanta, G. Montavon, M. Vardelle, M.P. Planche, C.C. Berndt, and C. Coddet, Artificial Neural Networks vs. Fuzzy Logic: Simple Tools to Predict and Control Complex Processes-Application to Plasma Spray Processes, J. Thermal Spray Technol., 2008, 17(3), p 365-376

    Article  ADS  Google Scholar 

  87. M.D. Jean, B.T. Lin, and J.H. Chou, Design of a Fuzzy Logic Approach for Optimization Reinforced Zirconia Depositions Using Plasma Sprayings, Surf. Coat. Technol., 2006, 201(6), p 3129-3138

    Article  CAS  Google Scholar 

  88. A.F. Kanta, G. Montavon, M.P. Planche, and C. Coddet, Prospect for Plasma Spray Processes On-Line Control Via Artificial Intelligence (Neural Networks and Fuzzy Logic), Thermal Spray 2006: Science, Innovation, and Application, Proc. 2006 ITSC, Seattle, WA, May 15-18, 2006, p 1027-1033

  89. A.F. Kanta, G. Montavon, M.P. Planche, and C. Coddet, Fuzzy Logic Analysis of Alumina-Titania Deposition Yield During APS Process, J. Thermal Spray Technol., 2007, 16, p 913-918

    Article  ADS  CAS  Google Scholar 

  90. A.F. Kanta, G. Montavon, M.P. Planche, and C. Coddet, In-Flight Particle Characteristics Control by Implementing a Fuzzy Logic Controller, Surf. Coat. Technol., 2008, 202, p 4479-4482

    Article  CAS  Google Scholar 

  91. L.A. Zadeh, Fuzzy Sets, Inform. Control, 1965, 8(3), p 338-353

    Article  MathSciNet  MATH  Google Scholar 

  92. H.J. Zimmermann, Fuzzy Set Theory, 2nd ed., Kluwer, Boston, 1991

  93. T.J. Ross, Fuzzy Logic with Engineering Applications, Wiley, Chichester, 2004

    MATH  Google Scholar 

  94. E.H. Mamdani and S. Assilian, An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller, IEEE Trans. Comput., 1975, 26(12), p 1182-1191

    Article  Google Scholar 

Download references

Acknowledgments

The author of this review paper is indebted to several colleagues including Christian Coddet (Belfort, France), Thomas Coyle (Toronto, Canada), Rogerio Lima (Boucherville, Canada), Sanjay Sampath (Stony Brook, USA), and P. Saravanan (Coimbatore, India) for providing access to their published work. Thanks are also due to Hans D. Lehmann (Görlitz, Germany) for bibliographical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Heimann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heimann, R.B. Better Quality Control: Stochastic Approaches to Optimize Properties and Performance of Plasma-Sprayed Coatings. J Therm Spray Tech 19, 765–778 (2010). https://doi.org/10.1007/s11666-009-9385-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-009-9385-3

Keywords

Navigation