Skip to main content
Log in

Tantalum oxide coatings as candidate environmental barriers

  • Reviewed Papers
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Tantalum (Ta) oxide, due to its high-temperature capabilities and thermal expansion coefficient similar to silicon nitride, is a promising candidate for environmental barriers for silicon (Si) nitride-based ceramics. This paper focuses on the development of plasma-sprayed Ta oxide as an environmental barrier coating for silicon nitride. Using a D-optimal design of experiments, plasma-spray processing variables were optimized to maximize coating density. The effect of processing variables on coating thickness was also determined. X-ray diffraction (XRD) was use to ascertain that the as-sprayed coatings were comprised of α- and β-Ta2O5, but were fully converted to β-Ta2O5 after a 1200 °C heat treatment. Grain growth of the Ta2O5 followed a time dependence of t 0.2 at 1200 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.L. Smialek, R.C. Robinson, E.J. Opila, D.S. Fox, and N.S. Jacobson: “SiC and Si3N4 Recession Due to SiO2 scale Volatility Under Combustor Conditions,” Adv. Composite Mater., 1999, 8(1), pp. 33–45.

    CAS  Google Scholar 

  2. E.J. Opila: “Variation of the Oxidation Rate of Silicon Carbide With Water-Vapor Pressure,” J. Am. Ceram. Soc., 1999, 82(3), pp. 625–36.

    Article  CAS  Google Scholar 

  3. R.C. Robinson, and J.L. Smialek: “SiC Recession Caused by SiO2 Volatility Under Combustion Conditions: I. Experimental Results and Empirical Model,” J. Am. Ceram. Soc., 1999, 82(7), pp. 1817–25.

    Article  CAS  Google Scholar 

  4. E.J. Opila, J.L. Smialek, R.C. Robinson, D.S. Fox, and N.S. Jacobson: “SiC Recession Caused by SiO2 Volatility Under Combustion Conditions: II, Thermodynamics and Gaseous-Diffusion Model,” J. Am. Ceram. Soc., 1999, 82(7), pp. 1826–34.

    CAS  Google Scholar 

  5. K.L. More, P.F. Tortorelli, M.K. Ferber, and J.R. Keiser: “Observations of Accelerated Silicon Carbide Recession by Oxidation at High Water-Vapor Pressures,” J. Am. Ceram. Soc., 2000, 83(1), pp. 211–13.

    Article  CAS  Google Scholar 

  6. K.N. Lee: “Current Status of Environmental Barrier Coatings for Si-Based Ceramics,” Surf. Coat. Technol., 2000, 133–34, pp. 1–7.

    Google Scholar 

  7. H. Klemm: “Corrosion of Silicon Nitride Materials in Gas Turbine Environment,” J. Euro. Ceram. Soc., 2002, 78(14–15), pp. 2735–40.

    Article  Google Scholar 

  8. C-W. Li, D. Raybould, and L.A. Xue: Environmental and Thermal Barrier Coating for Ceramic Components, U.S. Patent Application 2002/0136835 A1, September 26, 2002.

  9. Y.W. Bae, W.L. Lee, and D.P. Stinton: “Effects of Temperature and Reagent Concentration on the Morphology of Chemically Vapor Deposited β-Ta2O5,” J. Am. Ceram. Soc., 1995, 78(5), pp. 1297–1300.

    Article  CAS  Google Scholar 

  10. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and T.Y.R. Lee: Thermal Expansion, Nonmetallic Solids, IFI/ Plenum, New York, 1977, pp. 374–75.

    Google Scholar 

  11. Honeywell Inc. Sales Literature via J. Guiheen.

  12. JCPDS-International Centre for Diffraction Data, Newton Square, PA, Files 19-1300 (α-Ta2O5) and 79-1375 (β-Ta2O5) 2001.

  13. G.M. Choi, H.L. Tuller, and J.S. Haggerty: “α-Ta2O5—An Intrinsic Fast Oxygen Conductor,” J. Electrochem. Soc., 1989, 136(3) pp. 835–38.

    Article  CAS  Google Scholar 

  14. D.J. Peacock: “Vapor Deposition of Thin Films of Tantalum Oxide,” Electochem. Technol., 1966, 4(7–8), pp. 443–44.

    CAS  Google Scholar 

  15. C.C. Wang, K.H. Zaininger, and M.T. Duffy: “Vapor Deposition and Characterization of Metal Oxide Thin Films for Electronic Applications,” RCA Rev., 1970, 31(4), pp. 728–41.

    CAS  Google Scholar 

  16. T. Takahashu and H. Itoh: “Formation of Tantalum Oxide by Chemical Vapor-Deposition,” J. Less Common Met., 1972, 38, pp. 211–19.

    Article  Google Scholar 

  17. W.H. Knausenberger and R.N. Tauber: “Selected Properties of Pyrolytic Ta2O5 Films,” J. Electrochem. Soc., 1973, 120(7), pp. 927–31.

    Article  CAS  Google Scholar 

  18. C.H. An and K. Sugimoto: “In Situ Ellipsometric Analysis of the Formation Process of Ta2O5 Thin Films in MOCVD,” J. Electrochem. Soc., 1990, 123(10), pp. 1570–73.

    Google Scholar 

  19. D. Graham and D.P. Stinton: “Development of Tantalum Pentoxide Coatings by Chemical Vapor Deposition,” J. Am. Ceram. Soc., 1994, 77(9), pp. 2298–304.

    Article  CAS  Google Scholar 

  20. T.F. Bernecki and D.R. Marron: Small Particle Plasma Spray Apparatus, Methods, and Coated Articles, U.S. Patent 5,744,777, April 28, 1998 and U.S. Patent 5,858,470, Jan. 12, 1999.

  21. Y.J. Su, T.F. Bernecki, and K.T. Faber: “In-Situ Characterization of Small-Particle Plasma-Sprayed Powders,” J. Thermal Spray Tech., 2002, 11(1), pp. 52–61.

    Article  CAS  Google Scholar 

  22. R.W. Smith: Thermal Spray Technology, B. Willis, ed., ASM International, Materials Park, OH, 1992, pp. 1–66.

    Google Scholar 

  23. A.C. Atkinson and A.N. Donev: Optimal Experimental Designs, Clarendon Press, Oxford, UK, 1992.

    Google Scholar 

  24. F. Pukelsheim: Optimal Design of Experiments, Wiley, New York, 1993.

    MATH  Google Scholar 

  25. Experimental Design Optimizer, Harold S. Haller & Company, Cleveland, OH.

  26. R. Trice and K.T. Faber: “The Role of Lamellae Morphology on the Microstructural Development and Mechanical Properties of Small-Particle Plasma-Sprayed Alumina,” J. Am. Ceram. Soc., 2000, 83(5), pp. 889–96.

    CAS  Google Scholar 

  27. A. de Arellano-Lopez and K.T. Faber, “Microstructural Characterization of Small-Particle Plasma Spray Coatings,” J. Am. Ceram. Soc., 1999, 82(8), pp. 2204–08.

    Article  Google Scholar 

  28. R. Trice, Y. Su, J. Mawdsley, K.T. Faber, A. de Arellano-López, H. Wang, and W. Porter: “Effect of Heat Treatment on Phase Stability. Microstructure, and Thermal Conductivity of Plasma-Sprayed YSZ,” J. Mater. Sci., 2002, 37, pp. 2359–65.

    Article  CAS  Google Scholar 

  29. M. Hillert: “On Theory of Normal and Abnormal Grain Growth,” Acta Metall. 1965, 13(3), pp. 227–38.

    Article  CAS  Google Scholar 

  30. W.D. Kingery, H.K. Bowen, and D.R. Uhlmann: Introduction to Ceramic Science, 2nd Ed., J. Wiley & Sons, New York, 1976, pp. 454–55.

    Google Scholar 

  31. A.G. Evans: “Microfracture From Thermal-Expansion Anisotropy: I, Single Phase Systems,” Acta Metall. 1978, 26, pp. 1845–53.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moldovan, M., Weyant, C.M., Johnson, D.L. et al. Tantalum oxide coatings as candidate environmental barriers. J Therm Spray Tech 13, 51–56 (2004). https://doi.org/10.1007/s11666-004-0049-z

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-004-0049-z

Key words

Navigation