Skip to main content
Log in

Production of Nanoparticles in Thermal Plasmas: A Model Including Evaporation, Nucleation, Condensation, and Fractal Aggregation

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this work a coupled model for the production of nanoparticles in an inductively coupled plasma reactor is proposed. A Lagrangian approach is used to describe the evaporation of precursor particles and an Eulerian model accounting for particle nucleation, condensation, and fractal aggregation. The models of the precursor and nanoparticles are coupled with the magneto-hydrodynamic equations describing the plasma. The purpose of this study is to develop a model for the synthesis of particles in a thermal plasma reactor, which can be used to optimize industrial reactors. The growth of aggregates is considered by introducing a power law exponent D f. Results are compared qualitatively and quantitatively with existing experimental data from plasma reactors at a relatively large laboratory scale. The results obtained from the model confirm the previously observed importance of the quench strategy in defining the morphology of the nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. F.E. Kruis, H. Fissan, A. Peled, Synthesis of Nanoparticles in the Gas Phase for Electronic, Optical and Magnetic Applications—A Review. J. Aerosol Sci. 29(5-6), 511–535 1998

    Article  CAS  Google Scholar 

  2. P.C. Kong, E. Pfender, Thermal Plasma Synthesis of Ceramics—A Review. Heat Transfer Therm. Plasma Process. ASME 161, 1–8 (1991)

    CAS  Google Scholar 

  3. G. Vissokov, I. Grancharov, T. Tsvetanov. On the Plasma-Chemical Synthesis of Nanopowders. Plasma Sci. Technol. 5, 2039–2050 2003

    Article  CAS  Google Scholar 

  4. N.Y. Mendoza-Gonzalez, B.M. Goortani, P. Proulx. Numerical Simulation of Silica Nanoparticles Production in a RF Plasma Rector: Effect of Quench, Mater. Sci. Eng. C 27(5-8), 1265–1269 2007

    Article  CAS  Google Scholar 

  5. N.Y. Mendoza-Gonzalez, B.M. Goortani, P. Proulx. Numerical Study of the Synthesis of Nanoparticles in an Inductively Coupled Plasma Reactor. Czech. J. Phys. 56-B, B1263–B1270 2006

    Article  Google Scholar 

  6. M. Shigeta, T. Watanabe, H. Nishiyama. Numerical Investigation for Nanoparticle Synthesis in an RF Inductively Coupled Plasma. Thin Solid Films, 457, 192–200 2004

    Article  CAS  Google Scholar 

  7. R. Bolot, C. Coddet, C. Schreuders, M. Leparoux, S. Siegmann Modeling of an Inductively Coupled Plasma for the Synthesis of Nanoparticles, J. Therm. Spray Technol. 16(5-6), 690–697 2007

    Article  CAS  Google Scholar 

  8. R. Ye, J.G. Lian, T. Ishigaki. Controlled Synthesis of Alumina Nanoparticles Using Inductively Coupled Thermal Plasma with Enhanced Quenching. Thin Solid Fims 515(9), 4251–4257 2007

    Article  CAS  Google Scholar 

  9. B.M. Goortani, P. Proulx, S. Xue, N.Y. Mendoza-Gonzalez, Controlling Nanostructure in Thermal Plasma Processing: Moving from Highly Aggregated Porous Structure to Spherical Silica Nanoparticles. Powder Technol. 175, 22–32 2007

    Article  CAS  Google Scholar 

  10. C.R. Kaplan, J.W. Gentry Agglomeration of Chain-Like Combustion Aerosols due to Brownian Motion. Aerosol Sci. Technol. 8, 11–28 1988

    Article  CAS  Google Scholar 

  11. A. Kazakov and M. Frenklach, Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation with the Methods of Moments and Application to High-Pressure Laminar Premixed Flames, Combust. Flame, 1998, 114, p 484-501

  12. R.J. Samson, G.W. Mulholland, J.W. Gentry. Structural Analysis of Soot Aggregates. Langmuir 3, 272–281 1987

    Article  CAS  Google Scholar 

  13. T. Matsoukas, S.K. Friedlander. Dynamics of Aerosol Agglomerate Formation. J. Colloid Interface Sci. 146(2), 495–506 1991

    Article  CAS  Google Scholar 

  14. M.K. Wu, S.K. Friedlander. Enhanced Power Law Agglomerate Growth in the Free Molecular Regime. J. Aerosol Sci. 24, 273–282 1993

    Article  CAS  Google Scholar 

  15. Y. Xiong, S.E. Pratsinis. Formation of Agglomerate Particles by Coagulation and Sintering part I: A Two Dimensional Solution of the Population Balance Equation. J. Aerosol Sci. 24, 283–300 1993

    Article  CAS  Google Scholar 

  16. F. Kruis, K. Kusters, S. Pratsinis, Simple Model for the Evolution of the Characteristics of Aggregate Particles Undergoing Coagulation and Sintering. Aerosol Sci. Technol. 19, 514–526 1993

    Article  CAS  Google Scholar 

  17. J. I. Jeong, M. Choi. A Sectional Method for the Analysis of Growth of Polydisperse Non-Spherical Particles Undergoing Coagulation and Coalescence. J. Aerosol Sci. 32, 565–582 2001

    Article  Google Scholar 

  18. J.I. Jeong, M. Choi. Analysis of Non-Spherical Polydisperse Particle Growth in a Two-Dimensional Tubular Reactor. J. Aerosol Sci. 34, 713–732 2003

    Article  CAS  Google Scholar 

  19. F. Aristizabal, R.J. Munz, and D. Berk, Modeling of the Production of Ultra Fine Aluminium Particles in Rapid Quenching Turbulent Flow, Aerosol Sci. Technol., 2006, 37, p 162–189

    Google Scholar 

  20. T. Adona, “The Study of a Novel Thermal Process for the Production of Fumed Silica,” PhD Thesis, McGill University, Canada, 1998

  21. J.F. Bilodeau, “Modélisation de la Croissance de Poudres Ultrafines en Réacteur à Plasma Thermique (Modeling of the Ultra Fine Particle Growth in a Thermal Plasma Reactor),” PhD Thesis, Université de Sherbrooke, Canada, 1994, in French

  22. B.M. Goortani, N.Y. Mendoza, and P. Proulx, Synthesis of SiO2 Nanoparticles in RF Plasma Reactors: Effect of Feed Rate and Quench Gas Injection, Int. J. Chem. Reactor Eng., 2006, 4:A33, p 1-18

    Google Scholar 

  23. M.I. Boulos. Flow Temperature Fields in the Fire-Ball of an Inductively Coupled Plasma. IEEE Trans. Plasma Sci. 4, 28–39 1976

    Article  Google Scholar 

  24. S. Xue, P. Proulx, M.I. Boulos. Extended-Field Electromagnetic Model for Inductively Coupled Plasma. J. Phys. D: Appl. Phys. 34, 1897–1906 2001

    Article  CAS  Google Scholar 

  25. R. Bolot, J. Li, and C. Coddet, Some Key Advices for the Modeling of Plasma Jets using Fluent, Proceedings of the International Thermal Spray Conference, ITSC 2005, 2-4 May 2005, (Basel, Switzerland), DVS Verlag GmbH, Düsseldorf, Germany, CD-Room, ISBN: 3-87155-793-5

  26. R. Ye, P. Proulx, M.I. Boulos. Particle Turbulent Dispersion and Loading Effects in an Inductively Coupled Radio Frequency Plasma. J. Phys. D: Appl. Phys., 33(17), 2154–2162 2000

    Article  CAS  Google Scholar 

  27. M. Shigeta, H. Nishiyama. Numerical Analysis of Metallic Nanoparticle Synthesis Using RF Inductively Coupled Plasma Flows. Trans. ASME, 127, 1222–1230 2005

    Article  CAS  Google Scholar 

  28. P. Proulx, J. Mostaghimi, M.I. Boulos. Heating of Powers in an RF Inductively Coupled Plasma Under Dense Loading Conditions, Plasma Chem. Plasma Process. 7(1), 29–53 1987

    Article  CAS  Google Scholar 

  29. M.I. Boulos, W.H. Gauvin. The Plasma Jet as a Chemical Reactor, a Proposed Model. Can. J. Chem. Eng. 52(3), 355–363 1974

    Article  Google Scholar 

  30. L. Talbot, R.K. Chen, R.W. Schefer, D.R. Willis. Thermophoresis of Particles in a Heated Boundary Layer. J. Fluid Mech. 101(4), 737–758 1980

    Article  Google Scholar 

  31. H. Ounis, G. Ahmadi, J.B. McLaughlin. Brownian Diffusion of Submicrometer Particles in the Viscous Sublayer, J. Colloid Interface Sci. 143(1), 266–277 1991

    Article  CAS  Google Scholar 

  32. A. Li, G. Ahmadi. Dispersion and Deposition of Spherical Particles from Point Sources in a Turbulent Channel Flow. Aerosol Sci. Technol. 16(4), 209–226 1992

    Article  CAS  Google Scholar 

  33. W.E. Ranz, W.R. Marshall. Evaporation from Drops, Part I, Chem. Eng. Prog. 48(3), 141–146 1952

    CAS  Google Scholar 

  34. W.E Ranz, W.R Marshall. Evaporation from Drops, Part II, Chem. Eng. Prog. 48(4), 173–180 1952

    CAS  Google Scholar 

  35. S.L. Girshick, C.P. Chiu. Kinetic Nucleation Theory: A New Expression for the Rate of Homogeneous Nucleation from an Ideal Supersaturated Vapor. J. Chem. Phys. 93, 1273–1277 1990

    Article  CAS  Google Scholar 

  36. J.H. Seinfeld. Atmospheric Chemistry and Physics of Air Pollution. John Wiley & Sons, New York, 1986

    Google Scholar 

  37. G.M. Phanse, S.E. Pratsinis. Theory for Aerosol Generation in Laminar Flow Condensers. Aerosol Sci. Technol. 11(2), 100–119 1989

    Article  CAS  Google Scholar 

  38. S. Vemury, S. Pratsinis. Self-Preserving Size Distributions of Agglomerates J. Aerosol Sci. 26, 175–185 1995

    Article  CAS  Google Scholar 

  39. G.W. Mulholland, R.J Samson, R.D. Mountain, M.H. Ernst Cluster Size Distribution for Free Molecular Agglomeration. Energy Fuels 2, 481–486 1988

    Article  CAS  Google Scholar 

  40. D. Lindackers, M. Strecker, P. Roth, C. Janzen, S.E. Pratsinis. Formation and Growth of SiO2 Particles in Low Pressure H2/O2/Ar Flames Doped with SiH4. Combust. Sci. Technol. 123, 287–315 1997

    Article  CAS  Google Scholar 

  41. E. Pantos, J.B. West, W.H. Dokter, H.F. Van Garderen, R.A. Van Santen. Growth and Aging Phenomena in Silica Gels, J. Sol-Gel Sci. Technol. 2, 273–276 1994

    Article  CAS  Google Scholar 

  42. C.G. Wells, N.M. Morgan, M. Kraft, W. Wagner. A New Method for Calculating the Diameter of Partially-Sintered Nanoparticles and its Effect on Simulated Particle Properties. Chem. Eng. Sci. 64(1), 158–166 2006

    Article  CAS  Google Scholar 

  43. M. Frenklach, S.J. Harris. Aerosol Dynamics Modeling Using the Method of Moments. J. Colloid Interface Sci. 118, 252–261 1987

    Article  CAS  Google Scholar 

  44. M.I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas: Fundamentals and Applications, Plenum Press, New York, 1994

  45. P. Proulx, J. Mostaghimi, M.I. Boulos. Plasma-Particle Interaction Effects in Induction Plasma Modeling Under Dense Loading Conditions. Int. J. Heat Mass Transfer 28, 1327–1336 1985

    Article  CAS  Google Scholar 

  46. M. Shigeta, T. Watanabe. Numerical Investigation of Cooling Effect on Platinum Nanoparticle Formation in Inductively Coupled Thermal Plasmas. J. Appl. Phys. 103, 074903 2008

    Article  CAS  Google Scholar 

  47. J.F. Bilodeau, P. Proulx. A Mathematical Model for Ultrafine Iron Powder Growth in a Thermal Plasma, Aerosol Sci. Technol. 24, 175–189 1996

    Article  CAS  Google Scholar 

  48. M. Shigeta, T. Watanabe. Two Dimensional Analysis of Nanoparticle Formation in Induction Thermal Plasmas with Counterflow Cooling, Thin Solid Films, 103, 4415–4422 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norma Yadira Mendoza Gonzalez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendoza Gonzalez, N.Y., El Morsli, M. & Proulx, P. Production of Nanoparticles in Thermal Plasmas: A Model Including Evaporation, Nucleation, Condensation, and Fractal Aggregation. J Therm Spray Tech 17, 533–550 (2008). https://doi.org/10.1007/s11666-008-9209-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-008-9209-x

Keywords

Navigation