Skip to main content
Log in

Numerical study of the synthesis of nanoparticles in an inductively coupled plasma reactor

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

A two-dimensional axi-symmetric turbulent model of an Inductively Coupled Plasma (ICP) reactor is presented to observe the effect of quenching position and initial feed rate injection on the final particle size (silica). The model is developed with the Computational Fluid Dynamics (CFD) software Fluent-FPM, coupling three different models in order to describe the plasma generation, particle evaporation and aerosol growth phenomena. Three different quenching designs, with variation of the initial particle feed rate, are analyzed. Results show how the final size of particles is affected by the variation of these parameters. This study is validated with the experimental results reported by [1], and good agreement is observed specially for quench injection cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Goortani, N. Mendoza, P. Proulx: Article submited to the J. Chem. Reactor Eng., (2006).

  2. F. E. Kruis et al.: J. Aerosol Sci., 29 (1998) 511–535.

    Article  Google Scholar 

  3. S. L. Girshick et al.: J. Aerosol Sci., 24 (1993) 367–382.

    Article  Google Scholar 

  4. A. C. Da Cruz, R. J. Munz: KONA, 17 (2001) 85–94.

    Google Scholar 

  5. G. Soucy: Ph. D. Thesis, Université de Sherbrooke (1993})

  6. C. Laflamme et al.: J. High Temp. Chem. Process, 1 (1992) 293–301.

    Google Scholar 

  7. M. I. Boulos: J. High Temp. Mat. Process, 1 (1997) 17–39.

    Google Scholar 

  8. S. Xue et al.: J. Phys. D: Appl. Phys., 34 (2001) 1897–1906.

    Article  ADS  Google Scholar 

  9. B. E. Launder and D. B. Spalding: Computer Methods in Applied Mechanics and Engineering 1974.

  10. R. Bolot et al.: ITSC 2005, International Thermal Spray Conference, Switzerland, (2005).

  11. Fluent 6.1: User’s Manual to FLUENT 6.1. Fluent Inc. Centrera Resource Park, 10 Cavendish Court, Lebanon, USA 2004.

  12. M. I. Boulos, P. Fauchais and E. Pfender: Thermal Plasmas-Fundamentals and Applications, Plenum Press, New York (1994).

    Google Scholar 

  13. Chimera Technologies, Inc.: FPM Users Guide, FPM Version 1, USA (2003).

  14. M. Wilck: Dissertation, Universität, VWF Verlag, Berlin (1999).

    Google Scholar 

  15. M. Wilck: Ph. D. Thesis, University of Minesota, Mineapolis (1990})

  16. S. K. Friendlander: Smoke, Dust, and Haze: Fundamentals of Aerosol Behaviour. Wiley, New York 1977.

    Google Scholar 

  17. B. Dahneke: Simple kinetic theory of Brownian diffusion in vapors and aerosols Academic Press, New York 1983. 97–133.

    Google Scholar 

  18. J. Barret, C. Clement: J. Aerosol Sci., 19-2 (1988) 223–242.

    Article  Google Scholar 

  19. S. L. Girshick et al.: Aerosol Sci. Technol., 13 (1990) 2465–477.

    Google Scholar 

  20. W. D. Kingery: J. American Ceramic Society, 42 (1959) 6–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendoza-Gonzalez, N.Y., Proulx, P. & Goortani, B. Numerical study of the synthesis of nanoparticles in an inductively coupled plasma reactor. Czech J Phys 56 (Suppl 2), B1263–B1270 (2006). https://doi.org/10.1007/s10582-006-0360-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10582-006-0360-7

Key words

Navigation