Skip to main content
Log in

Modeling the Influence of Process Parameters and Additional Heat Sources on Residual Stresses in Laser Cladding

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In laser cladding thermal contraction of the initially liquid coating during cooling causes residual stresses and possibly cracks. Preweld or postweld heating using inductors can reduce the thermal strain difference between coating and substrate and thus reduce the resulting stress. The aim of this work is to better understand the influence of various thermometallurgical and mechanical phenomena on stress evolution and to optimize the induction-assisted laser cladding process to get crack-free coatings of hard materials at high feed rates. First, an analytical one-dimensional model is used to visualize the most important features of stress evolution for a Stellite coating on a steel substrate. For more accurate studies, laser cladding is simulated including the powder-beam interaction, the powder catchment by the melt pool, and the self-consistent calculation of temperature field and bead shape. A three-dimensional finite element model and the required equivalent heat sources are derived from the results and used for the transient thermomechanical analysis, taking into account phase transformations and the elastic-plastic material behavior with strain hardening. Results are presented for the influence of process parameters such as feed rate, heat input, and inductor size on the residual stresses at a single bead of Stellite coatings on steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

Symbol:

Quantity

a, mm2/s:

Heat diffusivity

aa, mm:

Ellipsoid half axis (x-direction)

bb, mm:

Ellipsoid half axis (y-direction)

cc, mm:

Ellipsoid half axis (z-direction)

b, mm:

Characteristic length of the bead cross section

c, cP, Ws/(g K):

Specific heat, specific heat of powder particles

d, mm:

Thickness of coating

\({\vec {e}_x,\;\vec {e}_z}\) :

Unit vector along the x-direction, z-direction

erfc(x):

Complementary error function \({\frac{2}{\sqrt{\pi}}\;\int_x^\infty {dx{^\prime}\;\exp \left({-x{^\prime}^{2}} \right)}}\)

f(x, y, z;\({\upalpha_{C}}\)):

Bead shape function

\({\vec {g}\;=\;-g \vec{e}_z}\), mm/s2:

Gravity acceleration vector

h, mm:

Substrate plate thickness

hP(x, y, z; R), Ws/g:

Specific enthalpy of particle with radius R at position (x, y, z)

ierfc(x):

Integrated complementary error function \({\int_x^\infty{dx{^\prime}\;erfc\left({x{^\prime}} \right)}}\)

j(x, y, z), g/(s mm2),:

Mass flow density

j*(x, y, z), g/(s mm2):

Mass flow density with gravity correction

jE(x, y), W/mm2:

Energy flux density of a laser beam incident along the z-direction

j *E (x, y, z), W/mm2:

Local energy flux density of the attenuated laser beam

n :

Scattering exponent

\({\vec {n}}\) :

Outward normal of the workpiece surface

p(x, y, z):

Volume fraction of powder particles in the interaction zone

p*(x, y, z):

Volume fraction of powder particles with gravity correction

q, qL, qI(x, y, z), W/mm3:

Absorbed spatial power density distribution (L: laser, I: induction)

q2,q2L, q2I(x, y), W/mm2:

Absorbed power per unit area (L: laser, I: induction)

\({\vec {q}_{\rm ext}},\) W/mm2:

Total external heat flux density through the workpiece surface

rL, mm:

Laser beam radius

\({\vec {r}},\) mm:

Space vector

\({\vec {r}_{\rm O}},\) mm:

Position of the nozzle outlet

t, s:

Time

\({\vec{v}\;=\;v\;\vec{e}_x},\) mm/s:

Feed rate

v0, m/s:

Initial powder particle speed

w, mm:

Bead width

w(R), mm−1:

Distribution function of powder particle radii

x, mm:

Coordinate along the feed direction

xmax, mm:

Foremost position of the bead/melting zone

xsol(z), mm:

Course of solidification front on the bead surface

y, mm:

Coordinate on the substrate surface across the feed direction

z, mm:

Coordinate perpendicular to the substrate surface

A, mm:

Absorbed fraction of irradiated energy

E, N/mm2:

Young’s modulus

F, mm2:

Area on the substrate surface covered by the powder stream

G(z, t), mm−1:

Green’s function of the one-dimensional heat flow equation

GR(x, y, z), mm−1:

Rosenthal’s solution of heat flow equation for a moving point source

\({\underline{\underline I}}\) :

Second rank unit tensor

J, g/s:

Mass flow (powder rate)

L, mm:

Distance between nozzle outlet and target point

QP, Ws/g:

Latent heat of melting (powder material)

R, m, mm:

Radius (of plate curvature, of particle)

T, °C:

Temperature

T0, °C:

Initial temperature

Tlim, °C:

Minimum required temperature for particles to be resorbed

TM,TMS,TMP, °C:

Melting point temperature, of substrate, of the powder

TP(x, y, z; R), °C:

Temperature of a particle with radius R at position (x, y, z)

TU, °C:

Ambient temperature

Z(x, y ;\({\upalpha_{\rm C}}\)), mm:

Local bead height

\({\upalpha},\) W/(mm2 K):

Heat transfer coefficient

\({\upalpha_{\rm C} \;\equiv \;\upgamma/{\left({g \uprho _0 b^{2}}\right)}}\) :

Capillarity parameter

\({\upbeta}\) :

Geometry parameter

χ:

Shear factor in the ellipsoid model

\({\updelta}\), mm:

Penetration depth of the electromagnetic field

\({-\updelta z\left({\vec {r}}\right),}\) mm:

Local gravity induced correction of particle trajectory

\({\underline{\underline \upvarepsilon},\;\upvarepsilon_{xx}}\) :

Total strain tensor, strain component

\({\underline{\underline \upvarepsilon}^{\rm E},\;\upvarepsilon_{xx}^{\rm E}}\) :

Elastic strain tensor, component

\({\underline{\underline \upvarepsilon}^{\rm I},\;\upvarepsilon_{xx}^{\rm I}}\) :

Inelastic strain tensor, component

\({\underline{\underline \upvarepsilon}^{\rm P},\;\upvarepsilon_{xx}^{\rm P}}\) :

Plastic strain tensor, component

\({\underline{\underline \upvarepsilon}^{\rm T}=\;\upvarepsilon _{\rm T}\;\underline{\underline I}}\) :

Thermometallurgical strain tensor

\({\upgamma}\), N/mm:

Surface tension

\({\upeta}\), mm:

Thickness of the equivalent heat source layer

\({\upkappa}\), mm−1:

Plate curvature

\({\uplambda}\), W/(mm K):

Heat conductivity

\({\upmu}\) :

Relative magnetic permeability

\({\upmu_{0}}\), Vs/(A mm):

Permeability constant

ν:

Poisson’s ratio

\({\uprho}\), V mm/A:

Electrical resistivity

\({\uprho_{0}}\), g/mm3:

Mass density

\({\underline{\underline \upsigma},}\) N/mm2:

Stress tensor

\({\upsigma_{xx},}\) N/mm2:

Longitudinal stress component

\({\upsigma_{yy},}\) N/mm2:

Transverse stress component

\({\upsigma_{\rm Y},}\) N/mm2:

Yield stress

\({\uptau}\), s:

Characteristic time of cooling by convection

\({\upomega}\), s−1:

Circular frequency

\({\Updelta}\)t, \({\Updelta t_{\rm i}}\), s:

Time interval of heating, inductive heating

\({\Updelta}\)m/\({\Updelta x}\), g/mm:

Powder mass deposited per unit length

\({\Updelta z}\), mm:

Interval on the z -axis

\({\Updelta Q_{\rm R}}\), W:

Amount of reflected power

\({\upvartheta}\) :

Scattering angle

\({\Uptheta (x)}\) :

Heaviside’s step function

\({\Upomega}\) :

Space angle

References

  1. V.M. Weerasinghe and W.M. Steen, Computer Simulation Model for Laser Cladding, ASME H.T.D., 1983, 29, p 15-23

    CAS  Google Scholar 

  2. L. Li, W.M. Steen, and R.B. Hibberd, Computer Aided Laser Cladding, Proc. ECLAT’90, H.W. Bergmann and R. Kupfer, Ed., Sept 1990 (Erlangen, Germany), Arbeitsgemeinschaft Wärmebehandlung und Werkstofftechnik e.V. (AWT), 1990, Vol 1, p 355-369

  3. C.F. Marsden, A. Frenk, J.-D. Wagnière, and R. Dekumbis, Effects of Injection Geometry on Laser Cladding, Proc. ECLAT’90, H.W. Bergmann and R. Kupfer, Sept 1990 (Erlangen, Germany), Arbeitsgemeinschaft Wärmebehandlung und Werkstofftechnik e.V. (AWT), 1990, Vol 1, p 535-542

  4. C.F. Marsden, A.F.A. Houdley, and J.-D. Wagnière, Characterisation of the Laser Cladding Process, Proc. ECLAT’90, H.W. Bergmann and R. Kupfer, Ed., Sept 1990 (Erlangen, Germany), Arbeitsgemeinschaft Wärmebehandlung und Werkstofftechnik e.V. (AWT), 1990, 1, p 543-553

  5. C.F. Marsden, A. Frenk, and J.-D. Wagnière, Power Absorption During the Laser Cladding Process, Laser Treatment of Materials—Proc. ECLAT’92, B.L. Mordike, Ed., Sept 1992 (Göttingen), DGM-Informationsgesellschaft Verlag, 1992, p 375-380

  6. W.-B. Li, H. Engström, J. Powell, Z. Tan, and C. Magnusson, Modelling of the Laser Cladding Process—Preheating of the Blown Powder Material, Lasers Eng., 1995, 4, p 329-341

    CAS  Google Scholar 

  7. H. Gedda, W.-B. Li, H. Engström, C. Magnusson, J. Powell, and G. Wahlström, Energy Redistribution During CO2 Laser Cladding, Proc. Laser Materials Processing Conference ICALEO 2001, Oct 2001 (Jacksonville, FL), 2001, p 701

  8. J. Lin, Temperature Analysis of the Powder Streams in Coaxial Laser Cladding, Optics Laser Technol., 1999, 31, p 565-570

    Article  Google Scholar 

  9. J. Lin and B.-C. Hwang, Coaxial Laser Cladding on an Inclined Substrate, Optics Laser Technol., 1999, 31, p 571-578

    Article  Google Scholar 

  10. J. Lin, A Simple Model of Powder Catchment in Coaxial Laser Cladding, Optics Laser Technol., 1999, 31(3), p 233-238

    Article  CAS  Google Scholar 

  11. Lin J., Hwang B.-C. (2001) Clad Profiles in Edge Welding Using a Coaxial Powder Filler Nozzle. Optics Laser Technol. 33:267-275

    Article  Google Scholar 

  12. C.-Y. Liu and J. Lin, Thermal Processes of a Powder Particle in Coaxial Laser Cladding, Optics Laser Technol., 2003, 35(2), p 81-86

    Article  Google Scholar 

  13. T. Yoshida and K. Akashi, Particle Heating in a Radio-Frequency Plasma Torch, J. Appl. Phys., 1977, 48(6), p 2252-2260

    Article  CAS  Google Scholar 

  14. A.F.A. Hoadley and M. Rappaz, A Thermal Model of Laser Cladding by Powder Injection, Metall. Trans. B, 1992, 23B(5), p 631-642

    Article  CAS  Google Scholar 

  15. M. Picasso and A.F.A. Hoadley, Finite Element Simulation of Laser Surface Treatments Including Convection in the Melt Pool, Int. J. Num. Meth. Heat Fluid Flow, 1994, 4, p 61-83

    Article  Google Scholar 

  16. N. Pirch, E.W. Kreutz, L. Möller, A. Gasser, and K. Wissenbach, Melt Dynamics in Surface Processing with Laser Irradiation, Proc. ECLAT’90, H.W. Bergmann and R. Kupfer, Ed., Sept 1990 (Erlangen, Germany), Arbeitsgemeinschaft Wärmebehandlung und Werkstofftechnik e.V. (AWT), 1990, p 65-80

  17. B. Ollier, N. Pirch, E.W. Kreutz, and H. Schlüter, Cladding with Laser Radiation: Properties and Analysis, Laser Treatment of Materials—Proc. ECLAT’92, B.L. Mordike, Ed., DGM—Informationsgesellschaft Verlag, 1992, p 687-692

  18. B. Ollier, N. Pirch, and E.W. Kreutz, Ein numerisches Modell zum einstufigen Laserstrahlbeschichten (A Numerical Model of Single-Stage Laser Cladding), Laser und Optoelektronik, 1995, 27(1), p 63-70 (in German)

    Google Scholar 

  19. H. Schmitter, “Simulation des einstufigen Laserbeschichtens mit FIDAP” (Simulation of the Single-Stage Laser Cladding), student research project, IFSW Stuttgart, 1994 (in German)

  20. M. Picasso, C.F. Marsden, J.-D. Wagniere, A. Frenk, and M. Rappaz, A Simple but Realistic Model for Laser Cladding, Metall. Mater. Trans. B, 1994, 25B, p281-291

    Article  CAS  Google Scholar 

  21. A.F.H. Kaplan and G. Groboth, Process Analysis of Laser Beam Cladding, J. Manuf. Sci. Eng., 2001, 123, p 609-614

    Article  Google Scholar 

  22. D. Lepski, H. Eichler, V. Fux, S. Scharek, and E. Beyer, Calculating Temperature Field and Single Track Bead Shape in Laser Cladding with Marangoni Flow using Rosenthal’s Solution, Lasers in Manufacturing—Proc. First Int. WLT-Conference on Lasers in Manufacturing, Wissenschaftliche Gesellschaft Lasertechnik e.V. (WLT), June 2001 (Munich), 2001, p 167-177

  23. D. Lepski, H. Eichler, V. Fux, S. Scharek, and E. Beyer, Simulation of the Powder Injection Laser Beam Cladding Process, Proc. Internat. Conf. “THE” Coatings in Manufacturing Engineering and EUREKA Partnering Event, Nov 2002 (Thessaloniki, Greece), 2002, p 529-538

  24. D. Lepski, H. Eichler, S. Scharek, V. Fux, E. Zoestbergen, and E. Beyer, Simulation Software for Laser Beam Cladding in Manufacturing, Proc. 16th Meeting on Mathematical Modeling of Materials Processing with Lasers (M 4 PL16), Jan 2003 (Igls, Austria)

  25. D. Lepski, H. Eichler, S. Scharek, V. Fux, St. Nowotny, and E. Beyer, Simulation of Laser Beam Cladding by Powder Injection, Int. Conf. Laser 2003—World of Photonics, June 2003 (Munich), 2003

  26. N. Pirch, S. Mokadem, S. Keutgen, K. Wissenbach, and E.W. Kreutz, 3D-Model for Laser Cladding by Powder Injection, Laser Assisted Net Shape Engineering 4, Proc. LANE 2004, M. Geiger and A. Otto, Ed., Sept 2004 (Erlangen, Germany), 2004, p 851-858

  27. E. Toyserkani, A. Khajepour, and S. Corbin, 3-D Finite Element Modeling of Laser Cladding by Powder Injection: Effects of Laser Pulse Shaping on the Process, Opt. Lasers Eng., 2004, 41, p 849-867

    Article  Google Scholar 

  28. J. Ahlström, B. Karlsson, and S. Niederhauser, Modeling of Laser Cladding of Medium Carbon Steel—a First Approach, J. Phys. IV France, 2004, 120, p 405-412

    Google Scholar 

  29. L. Han, F.W. Liou, and K.M. Phatak, Modeling of Laser Cladding with Powder Injection, Metall. Mater. Trans. B, 2004, 35B, p 1139-1150

    Article  Google Scholar 

  30. L. Han, K.M. Phatak, and F.W. Liou, Modeling of Laser Deposition and Repair Process, J. Laser Appl., 2005, 17(2), p 89-99

    Article  Google Scholar 

  31. J. Choi, L. Han, and Y. Hua, Modeling and Experiments of Laser Cladding with Droplet Injection, Trans. ASME, 2005, 127, p 978-986

    Article  CAS  Google Scholar 

  32. R.K. Chin, J.L. Beuth, and C.H. Amon, Thermomechanical Modelling of Successive Material Deposition in Layered Manufacturing, Proc. Solid Freeform Fabrication Symposium, 1996 (Austin, TX), 1996, p 507-514

  33. R.K. Chin, “Thermomechanical Modelling of Residual Stresses in Layered Manufacturing with Metals”, Ph.D. Thesis, Carnegie Mellon University, 1998

  34. N.W. Klingbeil, “Residual Stress Induced Warping and Interlayer Debonding in Layered Manufacturing“, Ph.D. Thesis, Carnegie Mellon University, 1998

  35. N.W. Klingbeil, J.L. Beuth, R.K. Chin, and C.H. Amon, Measurement and Modelling of Residual Stress-Induced Warpage in Direct Metal Deposition Processes, Proc. Solid Freeform Fabrication Symposium, 1998 (Austin, TX), 1998, p 367-374

  36. A.M. de Deus and J. Mazumder, Two-Dimensional Thermo-Mechanical Finite Element Model for Laser Cladding, Proc. ICALEO, 1996 (Detroit, MI), 1996, p 174-183

  37. A.M. de Deus, “A Thermal and Mechanical Model of Laser Cladding”, PH.D. Thesis, University of Illinois, 2004

  38. A.H. Nickel, “Analysis of Thermal Stresses in Shape Deposition Manufacturing of Metal Parts”, Ph.D. Thesis, Stanford University, 1999

  39. A.H. Nickel, D.M. Barnett, and F.B. Prinz, Thermal Stresses and Deposition Patterns in Layered Manufacturing, Mater. Sci. Eng., 2001, A317, p 59-64

  40. F.-J. Kahlen and A. Kar, Residual Stresses in Laser-Deposited Metal Parts, J. Laser Appl., 2001, 13(12), p 60-69

    Article  CAS  Google Scholar 

  41. K. Dai and L. Shaw, Thermal and Stress Modeling of Multi-Material Laser Processing, Acta Mater. 2001, 49, p 4171-4181

    Article  CAS  Google Scholar 

  42. S. Ghosh and J. Choi, Three-Dimensional Transient Residual Stress Finite Element Analysis for Laser Aided Direct Metal Deposition Process, Proc. ICALEO 2003, 2003 (Orlando, FL), CD-Rom No. 908

  43. S. Ghosh and J. Choi, Three-Dimensional Transient Finite Element Analysis for Residual Stresses in the Laser Aided Direct Metal/Material Deposition Process, J. Laser Appl., 2005, 17(3), p 144-158

    Article  CAS  Google Scholar 

  44. R. Jendrzejewski, G. Sliwinski, M. Krawczuk, and W. Ostachowicz, Temperature and Stress Fields Induced During Laser Cladding, Comput. Struct., 2004, 82, p 653-658

    Article  Google Scholar 

  45. R. Jendrzejewski, I. Kreja, and G. Sliwinski, Temperature Distribution in Laser-Clad Multi-Layers, Mater. Sci. Eng., 2004, A379, p 313-320

    CAS  Google Scholar 

  46. R. Jendrzejewski, G. Sliwinski, M. Krawczuk, and W. Ostachowicz, Laser Cladding of Protective Coatings of Limited Cracking Susceptibility, XV. International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, J. Kodymová, Ed., Aug-Sept 2004 (Prague, Czech Republic), 2004, p 925-928

  47. A. Plati, J.C. Tan, I.O. Golosnoy, R. Persoons, K. van Acker, and T.W. Clyne, Residual Stress Generation During Laser Cladding of Steel with a Particulate Metal Matrix Composite, Adv. Eng. Mats., Jan 2006, 8(7), p 619-624

  48. Y. Zhang, Z. Xianghua, and Y. Xiangkai, Elimination of Laser Cladding Cracks: Thermal Control and Stress Analysis, Proc. ICALEO 2001, 2001 (Orlando, FL), 2001, p 705

  49. G.W. Greenwood and R.H. Johnson, The Deformation of Metals Under Small Stresses During Phase Transformations, Proc. R. Soc. London. Series A, Mathematical and Physical Sciences, Jan 1965, 283 (1394), p 403-422

    Google Scholar 

  50. J.-B. Leblond, G. Mottet, and J.C. Devaux, A Theoretical and Numerical Approach to the Plastic Behaviour of Steels During Phase Transformations, I: Derivation of General Relations, J. Mech. Phys. Solids, 1986, 34 (4), p 395-409

    Article  Google Scholar 

  51. J.-B. Leblond, G. Mottet, and J.C. Devaux, A Theoretical and Numerical Approach to the Plastic Behaviour of Steels During Phase Transformations, II: Study of Classical Plasticity for Ideal Plastic Phases, J. Mech. Phys. Solids, 1986, 34 (4), p411-432

    Article  Google Scholar 

  52. J.-B. Leblond, J. Devaux, and J.C. Devaux, Mathematical Modelling of Transformation Plasticity in Steels, I: Case of Ideal Plastic Phases, Int. J. Plast., 1989, 5, p551-572

    Article  CAS  Google Scholar 

  53. J.-B. Leblond, J. Devaux, and J.C. Devaux, Mathematical Modelling of Transformation Plasticity in Steels, II: Coupling with Strain Hardening Phenomena, Int. J. Plast., 1989, 5, p 573-591

    Article  CAS  Google Scholar 

  54. B. Brenner, V. Fux, A. Wetzig, and St. Nowotny, Induktiv unterstütztes Laserauftragschweißen-eine Hybridtechnologie überwindet Anwendungsgrenzen (Induction Assisted Laser Cladding-a Hybrid Technology Expands Limits of Application), Proc. Sixth European Conference on Laser Treatment of Materials ECLAT’96, Sept 16-18, 1996 (Stuttgart(D)), 1996, 1, p 469-476 (in German)

  55. B. Brenner, V. Fux, and A. Wetzig, Induktiv unterstütztes Laserauftragschweißen (Induction Assisted Laser Cladding), Härt.-Tech. Mitt., 1997, 52 (4), p 221-225 (in German)

    CAS  Google Scholar 

  56. B. Brenner and V. Fux, Induktiv unterstütztes Laserauftragschweißen—ein neues Verfahren zur effektiven Erzeugung hochverschleißbeständiger Randschichten (Induction Assisted Laser Cladding—A New Technology for the Efficient Generation of Highly Wear Protective Coatings), Stahl, 1999, p 48-50 (in German)

  57. V. Fux and B. Brenner, Leistungsfähige Beschichtungsprozesse durch induktiv unterstütztes Laserauftragschweißen (High Performance Coating Technologies by Induction Assisted Laser Cladding), Freiberger Forschungshefte, 1999, B297, p 121-130 (in German)

    CAS  Google Scholar 

Download references

Acknowledgment

Financial support of this work by the Deutsche Forschungsgemeinschaft within the priority program 1139 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Brückner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brückner, F., Lepski, D. & Beyer, E. Modeling the Influence of Process Parameters and Additional Heat Sources on Residual Stresses in Laser Cladding. J Therm Spray Tech 16, 355–373 (2007). https://doi.org/10.1007/s11666-007-9026-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-007-9026-7

Keywords

Navigation