Skip to main content

Advertisement

Log in

Powder processing and properties of zircon-reinforced Al-13.5Si-2.5Mg alloy composites

  • Processing
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Zircon, ZrSiO4, is a thermally stable mineral requiring expensive and energy-intensive process to reduce. Owing to its abundance, high hardness, excellent abrasion/wear resistance, and low coefficient of thermal expansion, a low-cost alternative use of the mineral for medium-strength tribology was investigated. The present study has developed a conventional low-cost, double-compaction powder metallurgy route in the synthesis of Al-13.5Si-2.5Mg alloy reinforced with zircon. The mechanical and physical properties were determined following the development of optimum conditions of cold pressing and reactionsintering. Reinforcing the hypereutectic Al-Si alloy with 15 vol% zircon particles (size < 200 µm) and cold pressing at 350 MPa to near-net shape, followed by liquid-phase reaction sintering at 615 °C in vacuum for 20 min, improved the ultimate tensile strength, 0.2 % yield strength, and hardness of the alloy by 4,12.8, and 88%, respectively. At values of more than 9 vol% zircon, percent elongation and the dimensional changes of the sintered composites remained virtually unchanged. At a critical volume fraction of zircon, between 0.03 and 0.05, a sharp rise in hardness was observed. Microstructural and mechanical property analysis showed that the improvement in the mechanical properties is attributable largely to the load-bearing ability and intrinsic hardness of zircon, rather than to particulate dispersion effects. A good distribution of the dispersed zircon particulates in the matrix alloy was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.W. Chou, A. Kelly, and A. Okura, Fiber-Reinforced Metal Matrix Composites, Composites, Vol 16 (No. 3), 1985, p 187–206

    Article  CAS  Google Scholar 

  2. D.J. Lloyd, Particle Reinforced Aluminum and Magnesium Composites, Int. Mater. Rev., Vol 39 (No. 1), 1994, p 1–23

    CAS  Google Scholar 

  3. Alcan Aluminum Corp., U.S. Patent 4,786,467, 1988

  4. I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia, Paniculate Reinforced Metal Matrix Composites—A Review, J. Mater. Sci., Vol 26, 1991, p 1137–1156

    Article  CAS  Google Scholar 

  5. H.J. Rack, T.R. Baruch, and J.L. Cook, Progress in the Science and Engineering of Composites, Proc. ICCM 4, R. Hayashi,K. Kawata, and S. Umekawa, Ed., Japanese Society for Composite Materials, Tokyo, Japan, 1982, p 1465–1472

    Google Scholar 

  6. S.T. Mileiko, Fabrication of MMC, Handbook of Composites, Vol 4, 2nd ed., A. Kelly and S.T. Mileiko, Ed., 1986, p 221–294

  7. J.S. Crompton and R.W. Hertzberg, Analysis of Second Phase Particles in a Powder Metallurgy HIP Nickel-Base Superalloy, Mater. Sei., Vol 21 (No. 10), 1986, p 3445–3454

    Article  CAS  Google Scholar 

  8. E.Y. Gutmanas and A. Lawley, Processing of Specialty Alloys, Composites and Intermetallics from Fine Elemental Powders, Adv. Powder Metall., Vol 2, 1990, p 1–14

    Google Scholar 

  9. G.T. Lewis, D.M. Parkin, and F.A. Thompson, Proc. Conf. on Forging and Properties of Aerospace Materials, Metals Society, London, 1978, p 399

    Google Scholar 

  10. C.J. Lutgard, M. Chu, and M.K.F. Lin, Pore Size Distribution, Grain Growth and the Sintering Stress, J. Mater. Sei., Vol 24 (No. 12), 1989, p 4403–4408

    Article  Google Scholar 

  11. J.U. Ejiofor, B.A. Okorie, and R.G. Reddy, Synthesis and Property Analysis of Char Reinforced Al-Si Alloy Composites (unpublished data)

  12. R. Warren, Composites, Research and Development of High Temperature Materials for Industry, Proc. Conf. Commission of the European Communities, Elsevier, 1989, p 153–167

  13. A.M. Banerji, M.K. Surappa, and P.K. Rohatgi, Cast Al Alloys Containing Dispersion of Zircon Particles, Metall. Trans., Vol 14B, 1983, p 273–283

    CAS  Google Scholar 

  14. S.G. Kumar, R.G. Reddy, and J. Holthus, Evaluation of Microstructure and Phase Relations in a Powder Processed Ti-44A1-12Nb Alloy, J. Mater. Eng. Perf, Vol 4 (No. 1), 1995, p 63–69

    CAS  Google Scholar 

  15. P.V. Ananthapadmanabhan, K.P. Sreekumar, K. Veeramani, and N. Venkatramani, Influence of Some Process Variables on Plasma Dissociation of Zircon, Mater. Chem. Phys., Vol 38 (No. 1), 1994, p 15–20

    Article  CAS  Google Scholar 

  16. R.C. Ewing, W. Lutze, and W.J. Weber, Zircon: A Host Phase for the Disposal of Weapons Plutonium, J. Mater. Res., Vol 10 (No. 2), 1995, p 243–246

    CAS  Google Scholar 

  17. A.B. Corradi, C. Leonelli, T. Manfredini, and C. Siligardi, Effect of Forming Pressure on the Reactivity and Microstructure of Zircon Powder Compacts, J. Mater. Sei. Lett., Vol 12, 1993, p 1434–1436

    Article  Google Scholar 

  18. S. DeSouza and B.S. Terry, Production of Stabilized and Non-stabilized ZrC>2 by Carbothermic Reduction of ZrSiC>4, /. Mater. Sei., Vol 29, 1994, p 3329–3336

    Article  CAS  Google Scholar 

  19. M.R. Houchin, D.H. Jenkins, and H.N. Sinha, Production of High-Purity Zirconia from Zircon, Ceram. Bull., Vol 69 (No. 10), 1990, p 1706–1710

    CAS  Google Scholar 

  20. R.N. Singh and S.K. Reddy, Influence of Residual Stresses, Interface Roughness, and Fiber Coatings on Interfacial Properties in Ceramic Composites, J. Am. Ceram. Soc, Vol 79 (No. 1), 1996, p 137–147

    Article  CAS  Google Scholar 

  21. B.F. Dmitruik, O.G. Zarubitskii, and N.N. Yashchenko, Interaction of Zircon with Molten Alkali, Ukr. Khim. Zh., Vol 60 (No. 5–6, 1994, p 349–353 (in English and Russian)

    Google Scholar 

  22. V.V. Lyakhovich, P. Uger, and P. Siman, Hafnium in Zircon from Rapakivi Granite, Trans. USSRAcad. Sei.: Earth Sei. Sect., Vol 326 (No. 7), 1994, p 123–126

    Google Scholar 

  23. U.T.S. Pillai and R.K. Pandey, Fracture Characteristics of Al-Zircon Paniculate Composites, Compos. Sei. Technol., Vol 40 (No. 4), 1991, p 333–354

    Article  CAS  Google Scholar 

  24. K.G. Satyanarayana, B.C. Pai, M.R. Krishnader, and C.G. Nair, Aluminum Alloy Metal Matrix Composites for Engineering Applications, Proc. 32nd International SAMPE Symposium, 6-9 April 1987, p 880–889

  25. S.V. Ramani, S.K. Mohaptra, K.V. Gokhale, and E.C. Subarro, Trans. Indian Ceram. Soc., Vol 30, 1971, p 9–56

    Google Scholar 

  26. H.A. Hausner, in Handbook of Metal Powders, A.R. Poster, Ed., Reinhold Publishing Corp., New York, 1966

    Google Scholar 

  27. J.E. Williams, Production of Aluminum Powders, Powder Metallurgy, Metals Handbook, 9th ed., Vol 7, American Society for Metals, 1984, p 25–130

  28. W. Kehl, M. Bugajska, and H.F. Fischmeister, Internal or Diewall Lubrication for Compaction of Al Powders, Powder Metall., Vol 26 (No. 4), 1983, p 221–227

    CAS  Google Scholar 

  29. J.H. Dudas and C.B. Thompson, Improved Sintering Procedures for Al P/M Parts, Modern Developments in Powder Metallurgy, Vol 5, Plenum Press, 1971, p 19–36

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ejiofo, J.U., Okorie, B.A. & Reddy, R.G. Powder processing and properties of zircon-reinforced Al-13.5Si-2.5Mg alloy composites. J. of Materi Eng and Perform 6, 326–334 (1997). https://doi.org/10.1007/s11665-997-0097-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-997-0097-x

Keywords

Navigation