Skip to main content
Log in

Weld Morphology and Corrosion Characteristics of Flux-Assisted Gas Tungsten Arc-Welded Super Duplex Stainless Steel

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The strength of a weld joint can be improved by increasing the depth of penetration (DOP) in flux-assisted gas tungsten arc welding (A-GTAW). However, the corrosion resistance gets reduced which restricts the service life of components after A-GTAW. The objective of the present study is to examine the corrosion resistance of super duplex stainless steel plates made by A-GTAW using multiple fluxes, such as SiO2, TiO2, MoO3, MoS2, NiO and ZnO. Welds with adequate DOP were considered for subsequent microstructural and corrosion characterization. It was observed that the weld microstructures had predominantly δ-ferrite phase along with austenite (γ) phase. The pitting corrosion behavior of the welds was analyzed using electrochemical potentiodynamic polarization and immersion corrosion tests. The results were further confirmed through electrochemical impedance spectroscopy and capacitance tests. The corrosion products formed after electrochemical tests consisted of α-FeO(OH) and γ-Fe2O3. Secondary particles from the fluxes were observed to be dominated over the austenite (γ) phase which reduced the overall corrosion resistance of the welds. Among the fluxes considered in the present study, TiO2 flux provided decent DOP with the best corrosion resistance of the weld.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.O. Nilsson, Super Duplex Stainless Steels, Mater. Sci. Technol. (United Kingdom), 1992, 8(8), p 685–700.

    Article  CAS  Google Scholar 

  2. H. Tan, Y. Jiang, B. Deng, T. Sun, J. Xu, and J. Li, Effect of Annealing Temperature on the Pitting Corrosion Resistance of Super Duplex Stainless Steel UNS S32750, Mater Charact, 2009, 60(9), p 1049–1054. https://doi.org/10.1016/j.matchar.2009.04.009

    Article  CAS  Google Scholar 

  3. Y. Hou, Y. Nakamori, K. Kadoi, H. Inoue, and H. Baba, Initiation Mechanism of Pitting Corrosion in Weld Heat Affected Zone of Duplex Stainless Steel, Corros. Sci. Pergamon, 2022, 201, 110278. https://doi.org/10.1016/j.corsci.2022.110278

    Article  CAS  Google Scholar 

  4. K.-H. Tseng, and C.-Y. Hsu, Performance of Activated TIG Process in Austenitic Stainless Steel Welds, J. Mater. Process. Technol., 2011, 211(3), p 503–512. https://doi.org/10.1016/J.JMATPROTEC.2010.11.003

    Article  CAS  Google Scholar 

  5. S.W. Shyu, H.Y. Huang, K.H. Tseng, and C.P. Chou, Study of the Performance of Stainless Steel A-TIG Welds, J. Mater. Eng. Perform., 2008, 17(2), p 193–201. https://doi.org/10.1007/s11665-007-9139-7

    Article  CAS  Google Scholar 

  6. S. Tathgir and A. Bhattacharya, Activated-TIG Welding of Different Steels: Influence of Various Flux and Shielding Gas, Mater. Manuf. Processes, 2016, 31(3), p 335–342. https://doi.org/10.1080/10426914.2015.1037914

    Article  CAS  Google Scholar 

  7. S. Yue, Y. Huang, X. Yu, J. Zhang, Y. Ni, and D. Fan, Improving Welding Penetration and Mechanical Properties via Activated-Flux Smearing by Tungsten Inert Gas Arc Welding, Metals, 2023, 13(12), p 2017. https://doi.org/10.3390/met13122017

    Article  CAS  Google Scholar 

  8. A.R. Pavan, N. Chandrasekar, B. Arivazhagan, S. Kumar, and M. Vasudevan, Study of Arc Characteristics Using Varying Shielding Gas and Optimization of Activated-Tig Welding Technique for Thick AISI 316L(N) Plates, CIRP J. Manuf. Sci. Technol., 2021, 35, p 675–690.

    Article  Google Scholar 

  9. A.W. Fande, R.V. Taiwade, and L. Raut, Development of Activated Tungsten Inert Gas Welding and Its Current Status: A Review, Mater. Manuf. Processes, 2022, 37(8), p 841–876. https://doi.org/10.1080/10426914.2022.2039695

    Article  CAS  Google Scholar 

  10. M. Sabzi and S.M. Dezfuli, Drastic Improvement in Mechanical Properties and Weldability of 316L Stainless Steel Weld Joints by Using Electromagnetic Vibration during GTAW Process, J. Manuf. Processes, 2018, 33(February), p 74–85. https://doi.org/10.1016/j.jmapro.2018.05.002

    Article  Google Scholar 

  11. M. Sabzi, S.H. Mousavi Anijdan, A.R. Eivani, N. Park, and H.R. Jafarian, The Effect of Pulse Current Changes in PCGTAW on Microstructural Evolution, Drastic Improvement in Mechanical Properties, and Fracture Mode of Dissimilar Welded Joint of AISI 316L-AISI 310S Stainless Steels, Mater. Sci. Eng. A, 2021, 823(June), p 141700. https://doi.org/10.1016/j.msea.2021.141700

    Article  CAS  Google Scholar 

  12. M. Sabzi, S.H. Mousavi Anijdan, A.R.B. Chalandar, N. Park, H.R. Jafarian, and A.R. Eivani, An Experimental Investigation on the Effect of Gas Tungsten Arc Welding Current Modes upon the Microstructure, Mechanical, and Fractography Properties of Welded Joints of Two Grades of AISI 316L and AISI310S Alloy Metal Sheets, Mater. Sci. Eng. A, 2022, 840(February), p 142877. https://doi.org/10.1016/j.msea.2022.142877

    Article  CAS  Google Scholar 

  13. T. Reza Tabrizi, M. Sabzi, S.H. Mousavi Anijdan, A.R. Eivani, N. Park, and H.R. Jafarian, Comparing the Effect of Continuous and Pulsed Current in the GTAW Process of AISI 316L Stainless Steel Welded Joint Microstructural Evolution Phase Equilibrium, Mechanical Properties and Fracture Mode, J. Mater. Res. Technol., 2021, 15, p 199–212. https://doi.org/10.1016/j.jmrt.2021.07.154

    Article  CAS  Google Scholar 

  14. A.E. Odermatt, V. Ventzke, F. Dorn, R. Dinsé, P. Merhof, and N. Kashaev, Effect of Laser Beam Welding on Microstructure, Tensile Strength and Fatigue Behaviour of Duplex Stainless Steel 2205, J. Manuf. Processes, 2021, 72, p 148–158. https://doi.org/10.1016/j.jmapro.2021.10.020

    Article  Google Scholar 

  15. A. Miranda-Pérez, B. Rodríguez-Vargas, I. Calliari, and L. Pezzato, Corrosion Resistance of GMAW Duplex Stainless Steels Welds, Materials, 2023, 16(5), p 1847. https://doi.org/10.3390/ma16051847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. C. Gennari, M. Lago, B. Bögre, I. Meszaros, I. Calliari, and L. Pezzato, Microstructural and Corrosion Properties of Cold Rolled Laser Welded UNS S32750 Duplex Stainless Steel, Metals, 2018, 8(12), p 1074. https://doi.org/10.3390/met8121074

    Article  CAS  Google Scholar 

  17. G.T. Burstein, C. Liu, R.M. Souto, and S.P. Vines, Origins of Pitting Corrosion, Corros. Eng. Sci. Technol., 2004, 39(1), p 25–30. https://doi.org/10.1179/147842204225016859

    Article  CAS  Google Scholar 

  18. M. Pohl, O. Storz, and T. Glogowski, Effect of Intermetallic Precipitations on the Properties of Duplex Stainless Steel, Mater Charact, 2007, 58(1), p 65–71. https://doi.org/10.1016/j.matchar.2006.03.015

    Article  CAS  Google Scholar 

  19. R. Wang, Precipitation of Sigma Phase in Duplex Stainless Steel and Recent Development on Its Detection by Electrochemical Potentiokinetic Reactivation: A Review, Corros. Commun., 2021, 2, p 41–54. https://doi.org/10.1016/j.corcom.2021.08.001

    Article  Google Scholar 

  20. D.H. Kang and H.W. Lee, Study of the Correlation between Pitting Corrosion and the Component Ratio of the Dual Phase in Duplex Stainless Steel Welds, Corros. Sci., 2013, 74, p 396–407. https://doi.org/10.1016/j.corsci.2013.04.033

    Article  CAS  Google Scholar 

  21. R. Silva, C.L. Kugelmeier, G.S. Vacchi, C.B. Martins, I. Dainezi, C.R.M. Afonso, A.A.M. Filho, and C.A.D. Rovere, A Comprehensive Study of the Pitting Corrosion Mechanism of Lean Duplex Stainless Steel Grade 2404 Aged at 475 °C, Corros. Sci. Pergamon, 2021, 191, 109738. https://doi.org/10.1016/j.corsci.2021.109738

    Article  CAS  Google Scholar 

  22. K. Shen, W. Jiang, C. Sun, W. Zhao, and J. Sun, Unlocking the Influence of Microstructural Evolution on Hardness and Pitting Corrosion in Duplex Stainless Welded Joints, Corros. Sci. Pergamon, 2022, 206, 110532. https://doi.org/10.1016/J.CORSCI.2022.110532

    Article  CAS  Google Scholar 

  23. R.I. Hsieh, H.Y. Liou, and Y.T. Pan, Effects of Cooling Time and Alloying Elements on the Microstructure of the Gleeble-Simulated Heat-Affected Zone of 22% Cr Duplex Stainless Steels, J. Mater. Eng. Perform., 2001, 10(5), p 526–536. https://doi.org/10.1361/105994901770344665

    Article  CAS  Google Scholar 

  24. A. Putz, M. Althuber, A. Zelić, E.M. Westin, T. Willidal, and N. Enzinger, Methods for the Measurement of Ferrite Content in Multipass Duplex Stainless Steel Welds, Weld. World, 2019, 63(4), p 1075–1086. https://doi.org/10.1007/s40194-019-00721-4

    Article  CAS  Google Scholar 

  25. V.A. Hosseini, K. Hurtig, D. Eyzop, A. Östberg, P. Janiak, and L. Karlsson, Ferrite Content Measurement in Super Duplex Stainless Steel Welds, Weld. World, 2019, 63(2), p 551–563. https://doi.org/10.1007/s40194-018-00681-1

    Article  CAS  Google Scholar 

  26. Y. Jiang, T. Sun, J. Li, and J. Xu, Evaluation of Pitting Behavior on Solution Treated Duplex Stainless Steel UNS S31803, J. Mater. Sci. Technol., 2014, 30(2), p 179–183. https://doi.org/10.1016/j.jmst.2013.12.018

    Article  CAS  Google Scholar 

  27. S. Ningshen, U. Kamachi Mudali, V.K. Mittal, and H.S. Khatak, Semiconducting and Passive Film Properties of Nitrogen-Containing Type 316LN Stainless Steels, Corros. Sci. Pergamon, 2007, 49(2), p 481–496.

    Article  CAS  Google Scholar 

  28. P. Sivateja and R.S. Vidyarthy, Influential Behavior Study of Fluxes during Activated Flux Tungsten Inert Gas Welding of IRSM 41 Steel, J. Mater. Eng. Perform., 2024 https://doi.org/10.1007/s11665-024-09178-z

    Article  Google Scholar 

  29. N. Sahu, D. Panda, S.K. Badjena, S.K. Sahoo, and P.K. Kar, Multicomponent Flux for Improved Penetration and Metallurgical Properties Using A-GTAW, J. Mater. Eng. Perform., 2023, 32(9), p 4237–4248. https://doi.org/10.1007/s11665-022-07383-2

    Article  CAS  Google Scholar 

  30. S. Lu, H. Fujii, H. Sugiyama, and K. Nogi, Mechanism and Optimization of Oxide Fluxes for Deep Penetration in Gas Tungsten Arc Welding, Metall. Mater. Trans. A Miner. Metals Mater. Soc., 2003, 34(9), p 1901–1907. https://doi.org/10.1007/s11661-003-0155-4

    Article  Google Scholar 

  31. A. Kulkarni, D.K. Dwivedi, and M. Vasudevan, Dissimilar Metal Welding of P91 Steel-AISI 316L SS with Incoloy 800 and Inconel 600 Interlayers by Using Activated TIG Welding Process and Its Effect on the Microstructure and Mechanical Properties, J. Mater. Process. Technol., 2019, 274, 116280. https://doi.org/10.1016/j.jmatprotec.2019.116280

    Article  CAS  Google Scholar 

  32. D.S. Howse and W. Lucas, Investigation into Arc Constriction by Active Fluxes for Tungsten Inert Gas Welding, Sci. Technol. Weld. Join., 2000, 5(3), p 189–193. https://doi.org/10.1179/136217100101538191

    Article  CAS  Google Scholar 

  33. P. Sharma and D.K. Dwivedi, Study on Flux Assisted-Tungsten Inert Gas Welding of Bimetallic P92 Martensitic Steel-304H Austenitic Stainless Steel Using SiO2–TiO2 Binary Flux, Int. J. Press. Vessels Pip., 2021, 192, 104423. https://doi.org/10.1016/j.ijpvp.2021.104423

    Article  CAS  Google Scholar 

  34. H.-L. Lin and T.-M. Wu, Effects of Activating Flux on Weld Bead Geometry of Inconel 718 Alloy TIG Welds, Mater. Manuf. Processes, 2012, 27(12), p 1457–1461. https://doi.org/10.1080/10426914.2012.677914

    Article  CAS  Google Scholar 

  35. M. Rahmani, A. Eghlimi, and M. Shamanian, Evaluation of Microstructure and Mechanical Properties in Dissimilar Austenitic/Super Duplex Stainless Steel Joint, J. Mater. Eng. Perform., 2014, 23(10), p 3745–3753. https://doi.org/10.1007/s11665-014-1136-z

    Article  CAS  Google Scholar 

  36. S. Geng, J. Sun, L. Guo, and H. Wang, Evolution of Microstructure and Corrosion Behavior in 2205 Duplex Stainless Steel GTA-Welding Joint, J. Manuf. Processes, 2015, 19, p 32–37. https://doi.org/10.1016/j.jmapro.2015.03.009

    Article  Google Scholar 

  37. R. Rajasekaran, A.K. Lakshminarayanan, M. Vasudevan, and P.V. Raja, Stress Corrosion Cracking Susceptibility of 316LN Grade Stainless Steel Weld Joint in Boiling Magnesium Chloride Hexahydrate Environment, Metals Mater. Int. Korean Inst. Metals Mater., 2022, 28(11), p 2778–2797. https://doi.org/10.1007/s12540-021-01162-9

    Article  CAS  Google Scholar 

  38. G.N. Heintze and R. McPherson, Solidification Control of Submerged Arc Welds in Steels by Inoculation with Ti, Weld. J. (Miami, Fla), 1986, 65(3), p 71–82.

    Google Scholar 

  39. M. Sabzi, S. Mersagh Dezfuli, M. Asadian, A. Tafi, and A. Mahaab, Study of the Effect of Temperature on Corrosion Behavior of Galvanized Steel in Seawater Environment by Using Potentiodynamic Polarization and EIS Methods, Mater. Res. Express, 2019, 6(7), p 076508. https://doi.org/10.1088/2053-1591/ab10ad

    Article  CAS  Google Scholar 

  40. H.-Y. Ha, T.-H. Lee, C.-G. Lee, and H. Yoon, Understanding the Relation between Pitting Corrosion Resistance and Phase Fraction of S32101 Duplex Stainless Steel, Corros. Sci. Pergamon, 2019, 149, p 226–235. https://doi.org/10.1016/j.corsci.2019.01.001

    Article  CAS  Google Scholar 

  41. D.M. Cho, J.S. Park, S.G. Hong, and S.J. Kim, Corrosion Behaviors According to the Welding Process of Superduplex Stainless Steel Welded Tubes: Gas Tungsten Arc Welding vs Laser Beam Welding, Corros. Sci. Pergamon, 2023, 216, 111108. https://doi.org/10.1016/j.corsci.2023.111108

    Article  CAS  Google Scholar 

  42. M. Kawamori, J. Kinugasa, Y. Katsuki, N. Nishizawa, and M. Nagao, Mechanism of Improving Corrosion Resistance in Heat Affected Zone of Duplex Stainless Steel by Tantalum Addition, Corros. Sci. Pergamon, 2024, 227, 111748.

    Article  CAS  Google Scholar 

  43. I.M.B. Omiogbemi, D.S. Yawas, A. Das, M.O. Afolayan, E.T. Dauda, R. Kumar, S.R. Gorja, and S.G. Chowdhury, Mechanical Properties and Corrosion Behaviour of Duplex Stainless Steel Weldment Using Novel Electrodes, Sci. Rep., 2022, 12(1), p 1–17. https://doi.org/10.1038/s41598-022-26974-6

    Article  CAS  Google Scholar 

  44. C. Örnek, K. Davut, M. Kocabaş, A. Bayatlı, and M. Ürgen, Understanding Corrosion Morphology of Duplex Stainless Steel Wire in Chloride Electrolyte, Corros. Mater. Degrad. Multidiscip., 2021, 2(3), p 397–411. https://doi.org/10.3390/cmd2030021

    Article  Google Scholar 

  45. B. Zhang and X.L. Ma, A Review—Pitting Corrosion Initiation Investigated by TEM, J. Mater. Sci. Technol., 2019, 35(7), p 1455–1465. https://doi.org/10.1016/j.jmst.2019.01.013

    Article  CAS  Google Scholar 

  46. X. Huang, W. Qiu, B. Niu, X. Zou, L. Pan, and C.T. Kwok, Role of Complex Nonmetallic Inclusions on the Localized Corrosion Resistance of Wire Arc Additively Manufactured Super Duplex Stainless Steel, J. Mater. Res. Technol., 2024, 28, p 799–813.

    Article  CAS  Google Scholar 

  47. H.Y. Ha, C.J. Park, and H.S. Kwon, Effects of Non-Metallic Inclusions on the Initiation of Pitting Corrosion in 11% Cr Ferritic Stainless Steel Examined by Micro-Droplet Cell, Corros. Sci., 2007, 49(3), p 1266–1275. https://doi.org/10.1016/j.corsci.2006.08.017

    Article  CAS  Google Scholar 

  48. L.N. Zhang and O.A. Ojo, Corrosion Behavior of Wire Arc Additive Manufactured Inconel 718 Superalloy, J. Alloys Compd., 2020, 829, 154455. https://doi.org/10.1016/j.jallcom.2020.154455

    Article  CAS  Google Scholar 

  49. M. Boroujerdnia, A. Obeydavi, and M. Sabzi, Synthesis and Characterisation of a Novel Fe-Based Nanocomposite by Mechanical Alloying and Spark Plasma Sintering, Powder Metall., 2021, 64(4), p 283–294. https://doi.org/10.1080/00325899.2021.1904582

    Article  CAS  Google Scholar 

  50. M. Sabzi, A.H. Jozani, F. Zeidvandi, M. Sadeghi, and S.M. Dezfuli, Effect of 2-Mercaptobenzothiazole Concentration on Sour-Corrosion Behavior of API X60 Pipeline Steel: Electrochemical Parameters and Adsorption Mechanism, Int. J. Miner. Metall. Mater., 2022, 29(2), p 271–282.

    Article  CAS  Google Scholar 

  51. J. Lv, W. Guo, and T. Liang, The Effect of Pre-Deformation on Corrosion Resistance of the Passive Film Formed on 2205 Duplex Stainless Steel, J. Alloys Compd., 2016, 686, p 176–183. https://doi.org/10.1016/j.jallcom.2016.06.003

    Article  CAS  Google Scholar 

  52. L. Hamadou, A. Kadri, and N. Benbrahim, Impedance Investigation of Thermally Formed Oxide Films on AISI 304L Stainless Steel, Corros. Sci. Pergamon, 2010, 52(3), p 859–864. https://doi.org/10.1016/j.corsci.2009.11.004

    Article  CAS  Google Scholar 

  53. L. Li, C.F. Dong, K. Xiao, J.Z. Yao, and X.G. Li, Effect of PH on Pitting Corrosion of Stainless Steel Welds in Alkaline Salt Water, Constr. Build. Mater., 2014, 68, p 709–715.

    Article  Google Scholar 

  54. M. Liu, B. Liu, Z. Ni, C. Du, and X. Li, Elucidating the Effect of Titanium Alloying on the Pitting Corrosion of Ferritic Stainless Steel, J. Mater. Res. Technol., 2024, 28, p 1247–1262.

    Article  CAS  Google Scholar 

  55. J. Zhang, X. Hu, and K. Chou, Effect of Thiosulfate on Corrosion Behavior and Passive Films of Duplex Stainless Steel 2205 in Chloride Solutions, Int. J. Electrochem. Sci., 2019, 14(10), p 9960–9973.

    Article  CAS  Google Scholar 

  56. H. Luo, C.F. Dong, K. Xiao, and X.G. Li, Characterization of Passive Film on 2205 Duplex Stainless Steel in Sodium Thiosulphate Solution, Appl. Surf. Sci. North-Holl., 2011, 258(1), p 631–639. https://doi.org/10.1016/j.apsusc.2011.06.077

    Article  CAS  Google Scholar 

  57. L. Zhang, Y. Jiang, B. Deng, W. Zhang, J. Xu, and J. Li, Effect of Aging on the Corrosion Resistance of 2101 Lean Duplex Stainless Steel, Mater Charact, 2009, 60(12), p 1522–1528. https://doi.org/10.1016/j.matchar.2009.08.009

    Article  CAS  Google Scholar 

  58. J. Bhandari, S. Lau, R. Abbassi, V. Garaniya, R. Ojeda, D. Lisson, and F. Khan, Accelerated Pitting Corrosion Test of 304 Stainless Steel Using ASTM G48 Experimental Investigation and Concomitant Challenges, J. Loss Prev. Process Ind., 2017, 47, p 10–21. https://doi.org/10.1016/j.jlp.2017.02.025

    Article  CAS  Google Scholar 

  59. Neetu, P.K. Katiyar, S. Sangal, and K. Mondal, Effect of Various Phase Fraction of Bainite Intercritical Ferrite, Retained Austenite and Pearlite on the Corrosion Behavior of Multiphase Steels, Corros. Sci. Pergamon, 2021, 178, p 109043. https://doi.org/10.1016/j.corsci.2020.109043

    Article  CAS  Google Scholar 

  60. A. Yilmaz, K. Traka, S. Pletincx, T. Hauffman, J. Sietsma, and Y. Gonzalez-Garcia, Effect of Microstructural Defects on Passive Layer Properties of Interstitial Free (IF) Ferritic Steels in Alkaline Environment, Corros. Sci. Pergamon, 2021, 182, p 109271.

    Article  CAS  Google Scholar 

  61. G. Tranchida, M. Clesi, F. Di Franco, F. Di Quarto, and M. Santamaria, Electronic Properties and Corrosion Resistance of Passive Films on Austenitic and Duplex Stainless Steels, Electrochimica Acta, Pergamon, 2018, 273, p 412–423. https://doi.org/10.1016/j.electacta.2018.04.058

    Article  CAS  Google Scholar 

  62. E. Rahimi, A. Kosari, S. Hosseinpour, A. Davoodi, H. Zandbergen, and J.M.C. Mol, Characterization of the Passive Layer on Ferrite and Austenite Phases of Super Duplex Stainless Steel, Appl. Surf. Sci. North-Holl., 2019, 496, 143634. https://doi.org/10.1016/j.apsusc.2019.143634

    Article  CAS  Google Scholar 

  63. G. Yang, Y. Du, S. Chen, Y. Ren, and Y. Ma, Effect of Secondary Passivation on Corrosion Behavior and Semiconducting Properties of PASSIVE FILM of 2205 Duplex Stainless Steel, J. Mater. Res. Technol., 2021, 15, p 6828–6840. https://doi.org/10.1016/j.jmrt.2021.11.118

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author acknowledges the Department of Metallurgical and Material Engineering, VSSUT, Burla, for helping to carry out the experimental works. The authors also acknowledge the help received from the XRD-texture laboratory of Metallurgical and Materials Engineering, NIT, Rourkela.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilakantha Sahu.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, N., Naik, R.K., Panda, D. et al. Weld Morphology and Corrosion Characteristics of Flux-Assisted Gas Tungsten Arc-Welded Super Duplex Stainless Steel. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09582-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09582-5

Keywords

Navigation