Skip to main content

Advertisement

Log in

Microstructure and Tensile Properties of Microwave Welded Hastelloy C-276 Joints

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, microwave joining of Hastelloy C-276 joints is reported using Hastelloy C-276 powder as an interlayer (~ 15 ± 6 µm). Microwave hybrid heating technique was adopted to develop the joints using a graphite susceptor inside a multimode microwave applicator at 900 W power, frequency of 2.45 GHz and 760 s exposure time. The joints were characterized to study the microstructure, hardness, and tensile properties. Microstructural analysis revealed defect and crack-free joints with adequate metallurgical bonding and diffusion between interface layer and base material. Fine cellular (spherical) microstructure and skeleton-like hard carbides were present at the grain boundaries. Formation of intermetallic phases Fe3Ni and Ni3Cr was confirmed by the XRD analysis, whereas hard carbides Mo2C and W2C were identified by EDS analysis. The welded zone possesses 23% higher microhardness than base metal with an average microhardness of 282 HV. The ultimate tensile strength of the joint was estimated 602 ± 22 MPa with 20% of elongation capacity, and the achieved joint efficiency was 82%. Fractography analysis reveals the failure of the joint due to mixed (shear, ductile, and brittle) modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.S. Srinath, A.K. Sharma, and P. Kumar, A New Approach to Joining of Bulk Copper Using Microwave Energy, Mater. Des., 2011, 32(5), p 2685–2694. https://doi.org/10.1016/j.matdes.2011.01.023

    Article  CAS  Google Scholar 

  2. A. Bansal, A.K. Sharma, P. Kumar, and S. Das, Investigation on Microstructure and Mechanical Properties of the Dissimilar Weld Between Mild Steel and Stainless Steel-316 Formed Using Microwave Energy, Proc. Inst. Mech. Eng. B J. Eng. Manuf., 2016, 230(3), p 439–448. https://doi.org/10.1177/0954405414558694

    Article  CAS  Google Scholar 

  3. A. Bansal, A.K. Sharma, and S. Das, Metallurgical and Mechanical Characterization of Mild Steel-Mild Steel Joint Formed by Microwave Hybrid Heating Process, Sadhana Acad. Proceed. Eng. Sci., 2013, 38(4), p 679–686. https://doi.org/10.1007/s12046-013-0142-4

    Article  CAS  Google Scholar 

  4. D.L. Kamble, R.K. Sahu, and S. Narendranath, Characterization of Inconel 625-SS 304 Weldments Developed by Selective Microwave Hybrid Joining Technique for Promising Applications, J. Mater. Eng. Perform., 2023 https://doi.org/10.1007/s11665-023-08390-7

    Article  Google Scholar 

  5. V. Kumar and S. Sehgal, Metallurgical and Mechanical Assessment of SS2205/SS304 Joints Fabricated Using Modified Selective Microwave Hybrid Heating-Based Joining, J. Mater. Eng. Perform., 2023 https://doi.org/10.1007/s11665-023-08605-x

    Article  Google Scholar 

  6. A.K. Sharma and R.R. Mishra, Role of Particle Size in Microwave Processing of Metallic Material Systems, Mater. Sci. Technol. UK, 2018, 34(2), p 123–137. https://doi.org/10.1080/02670836.2017.1412043

    Article  CAS  Google Scholar 

  7. M.S. Srinath, A.K. Sharma, and P. Kumar, A Novel Route for Joining of Austenitic Stainless Steel (SS-316) Using Microwave Energy, Proc. Inst. Mech. Eng. B J. Eng. Manuf., 2011, 225(7), p 1083–1091. https://doi.org/10.1177/2041297510393451

    Article  CAS  Google Scholar 

  8. A. Bansal, A.K. Sharma, P. Kumar, and S. Das, Characterization of Bulk Stainless Steel Joints Developed Through Microwave Hybrid Heating, Mater Charact, 2014, 91, p 34–41. https://doi.org/10.1016/j.matchar.2014.02.005

    Article  CAS  Google Scholar 

  9. A. Bansal, A. Kumar Sharma, S. Das, and P. Kumar, Characterization of Microstructure and Strength of Microwave Welded Inconel 718 Joints at 245 GHz Frequency, Kovove Mater., 2016, 54(1), p 27–35. https://doi.org/10.4149/km-2016-1-27

    Article  CAS  Google Scholar 

  10. R.I. Badiger, S. Narendranath, and M.S. Srinath, Joining of Inconel-625 Alloy Through Microwave Hybrid Heating and its Characterization, J. Manuf. Process., 2015, 18, p 117–123. https://doi.org/10.1016/j.jmapro.2015.02.002

    Article  Google Scholar 

  11. R.I. Badiger, S. Narendranath, and M.S. Srinath, Microstructure and Mechanical Properties of Inconel-625 Welded Joint Developed Through Microwave Hybrid Heating, Proc. Inst. Mech. Eng. B J. Eng. Manuf., 2018, 232(14), p 2462–2477. https://doi.org/10.1177/0954405417697350

    Article  CAS  Google Scholar 

  12. S. Singh, R. Singh, D. Gupta, and V. Jain, Preliminary Metallurgical and Mechanical Investigations of Microwave Processed Hastelloy Joints, J. Manuf. Sci. E. T. ASME, 2017, 139(6), p 1–5. https://doi.org/10.1115/1.4035370

    Article  CAS  Google Scholar 

  13. K. Simant, J. Dutta, and A. Roy, E ff ect of Post-Weld Heat Treatment on the Tensile Strength of Laser Beam Welded Hastelloy C-276 Sheets at di ff Erent Heat Inputs, J. Manuf. Process., 2018, 37(July), p 578–594. https://doi.org/10.1016/j.jmapro.2018.12.019

    Article  Google Scholar 

  14. K.S. Bal, J. Dutta Majumdar, and A. Roy Choudhury, Study on Uni-Axial Tensile Strength Properties of Ytterbium Fiber Laser Welded Hastelloy C-276 Sheet, Opt. Laser Technol., 2018, 108, p 392–403. https://doi.org/10.1016/j.optlastec.2018.07.018

    Article  CAS  Google Scholar 

  15. M.D. Barath Kumar and M. Manikandan, Effect of Continuous and Pulsed Current Techniques on Wire-Arc Additive Manufacturing of a Nickel-Based Superalloy, Mater. Lett., 2023 https://doi.org/10.1016/j.matlet.2023.134080

    Article  Google Scholar 

  16. M. Manikandan, N. Arivazhagan, M.N. Rao, and G.M. Reddy, Microstructure and Mechanical Properties of Alloy C-276 Weldments Fabricated by Continuous and Pulsed Current Gas Tungsten Arc Welding Techniques, J. Manuf. Process., 2014, 16(4), p 563–572. https://doi.org/10.1016/j.jmapro.2014.08.002

    Article  Google Scholar 

  17. S. Bezawada and R. Gajjela, Microstructural and Mechanical Characterization of Welded Joints between Stainless Steel and Hastelloy Made Using Pulsed Current Gas Tungsten Arc Welding, J. Mater. Eng. Perform., 2023, 32(3), p 1076–1088. https://doi.org/10.1007/s11665-022-07197-2

    Article  CAS  Google Scholar 

  18. D.J. Wu, G.Y. Ma, F.Y. Niu, and D.M. Guo, Pulsed Laser Welding of hastelloy C-276: High-temperature mechanical properties and microstructure, Mater. Manuf. Processes, 2013, 28(5), p 524–528. https://doi.org/10.1080/10426914.2012.736652

    Article  CAS  Google Scholar 

  19. K.S. Bal, J. Dutta Majumdar, and A. Roy Choudhury, Study of Variation in Fracture Location of Electron Beam-Welded Hastelloy C-276 Sheets Under Uniaxial Tension, J. Mater. Eng. Perform., 2020, 29(12), p 8370–8394. https://doi.org/10.1007/s11665-020-05266-y

    Article  CAS  Google Scholar 

  20. R.R. Mishra and A.K. Sharma, Microwave-Material Interaction Phenomena: Heating Mechanisms, Challenges and Opportunities in Material Processing, Compos. Part A Appl. Sci. Manuf., 2016, 81, p 78–97. https://doi.org/10.1016/j.compositesa.2015.10.035

    Article  CAS  Google Scholar 

  21. K.V. Venkata Nagaraju, S. Kumaran, and T.S. Rao, Optimization of Microwave Processing Parameters on Powder-Metallurgical 316L Stainless Steels, Mater. Manuf. Process., 2022, 37(10), p 1132–1144. https://doi.org/10.1080/10426914.2021.2001512

    Article  CAS  Google Scholar 

  22. K.V.V. Nagaraju, S. Kumaran, and T.S. Rao, Microwave-Assisted Hybrid Sintering of 316L Powder Compacts: Microstructure, Mechanical, and Electrochemical Properties, J. Mater. Eng. Perform., 2022, 31(11), p 9555–9572. https://doi.org/10.1007/s11665-022-06948-5

    Article  CAS  Google Scholar 

  23. K.V.B. Reddy, G. Venkatesh, and R.R. Mishra, Microwave Joining of SS-316 Plates: A Multi-Physics Simulation Study, J. Manuf. Process., 2023, 98, p 29–41. https://doi.org/10.1016/j.jmapro.2023.04.079

    Article  Google Scholar 

  24. L. Da Silva Ferreira, K. Graf, and A. Scheid, Microstructure and Properties of Nickel-Based C276 Alloy Coatings by PTA on AISI 316L and API 5L X70 Steel Substrates, Mater. Res., 2015, 18(1), p 212–221. https://doi.org/10.1590/1516-1439.332914

    Article  Google Scholar 

  25. S. Zafar and A.K. Sharma, Development and Characterisations of WC-12Co Microwave Clad, Mater Charact, 2014, 96, p 241–248. https://doi.org/10.1016/j.matchar.2014.08.015

    Article  CAS  Google Scholar 

  26. A. Bansal, S. Zafar, and A.K. Sharma, Microstructure and Abrasive Wear Performance of Ni-Wc Composite Microwave Clad, J. Mater. Eng. Perform., 2015, 24(10), p 3708–3716. https://doi.org/10.1007/s11665-015-1657-0

    Article  CAS  Google Scholar 

  27. S. Singh, D. Gupta, V. Jain, and A.K. Sharma, Microwave Processing of Materials and Applications in Manufacturing Industries: A Review, Mater. Manuf. Processes, 2015, 30(1), p 1–29. https://doi.org/10.1080/10426914.2014.952028

    Article  CAS  Google Scholar 

  28. S. Singh, D. Gupta, and V. Jain, Processing of Ni-WC-8Co MMC Casting Through Microwave Melting, Mater. Manuf. Processes, 2018, 33(1), p 26–34. https://doi.org/10.1080/10426914.2017.1291954

    Article  CAS  Google Scholar 

  29. A. Das, T. Chowdhury, and S. Tarafder, Ductile Fracture Micro-Mechanisms of High Strength Low Alloy Steels, Mater. Des., 2014, 54, p 100–1009. https://doi.org/10.1016/j.matdes.2013.09.018

    Article  CAS  Google Scholar 

  30. A. Das, S. Sivaprasad, M. Tarafder, S.K. Das, and S. Tarafder, Estimation of Damage in High Strength Steels, Appl. Soft Comput. J., 2013, 13(2), p 1033–1041. https://doi.org/10.1016/j.asoc.2012.09.016

    Article  Google Scholar 

  31. A. Das, Effect of Stress State on Fracture Features, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2018, 49(5), p 1425–1432. https://doi.org/10.1007/s11661-018-4516-4

    Article  CAS  Google Scholar 

  32. A. F. Liu, Mechanics and Mechanisms of Fracture: an Introduction. ASM International, (2005).

  33. J. L. González-Velázquez, Fractography and Failure Analysis, vol. 24. Springer, (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gudipadu Venkatesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, K.V.B., Venkatesh, G. & Mishra, R.R. Microstructure and Tensile Properties of Microwave Welded Hastelloy C-276 Joints. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09576-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09576-3

Keywords

Navigation