Skip to main content
Log in

Non-isothermal Kinetic Analysis of High Temperature Oxidation of Additively Manufactured Ti-6Al-4V Alloy

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, for the first time, non-isothermal oxidation behavior of the AM Ti-6Al-4V alloy was investigated through TGA-DTA to predict and determine the oxidation mechanism. TGA results were evaluated by both model-free kinetic models and model-fitting methods. The model-fitting kinetic method was applied to predict and determine the reaction mechanism. The obtained results indicate that the reaction is controlled by D2 and D3 models at heating rates of 5 and 10°C/min, respectively. F2 and F1 control the reaction mechanism at heating rates of 20 and 50°C/min, respectively. The results of this study indicate that oxidation kinetics vary with reaction time, allowing us to predict which materials are most favorable to use under certain conditions with respect to oxidation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Pre-exponential factor (s−1)

E a :

Activation energy (kJ/mol)

k :

Reaction-rate constant (s−1)

R :

Universal gas constant (J mol−1 K−1)

T :

Temperature (ºC)

m :

Mass (g)

α :

Fractional conversion degree

β :

Heating rate (ºC/min)

AM:

Additive manufacturing

DED:

Directed energy deposition

EBM:

Electron beam melting

LPBF:

Laser powder bed fusion

TGA:

Thermogravimetric analysis

DTA:

Differential thermal analysis

FWO:

Flynn–Wall–Ozawa

KAS:

Kissinger–Akahira–Sunose

CR:

Coast–Redfern

OM:

Optical microscope

Ti:

Titanium

g(α):

Integrated reaction model

References

  1. J. Dai, J. Zhu, C. Chen, and F. Weng, High Temperature Oxidation Behavior and Research Status of Modifications on Improving High Temperature Oxidation Resistance of Titanium Alloys and Titanium Aluminides: A Review, J. Alloy. Compd., 2016, 685, p 784–798.

    Article  CAS  Google Scholar 

  2. K. Gu, H. Zhang, B. Zhao, J. Wang, Y. Zhou, and Z. Li, Effect of Cryogenic Treatment and Aging Treatment on the Tensile Properties and Microstructure of Ti–6Al–4V Alloy, Mater. Sci. Eng. A, 2013, 584, p 170–176.

    Article  CAS  Google Scholar 

  3. M. Rahman, Z.G. Wang, and Y.S. Wong, A Review on High-Speed Machining of Titanium Alloys, JSME Int J. Ser. C, 2006, 49(1), p 11–20.

    Article  CAS  Google Scholar 

  4. K. Bordji, J.Y. Jouzeau, D. Mainard, E. Payan, P. Netter, K.T. Rie, T. Stucky, and M. Hage-Ali, Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5Fe Alloys According to Three Surface Treatments, Using Human Fibroblasts and Osteoblasts, Biomaterials, 1996, 17(9), p 929–940.

    Article  CAS  PubMed  Google Scholar 

  5. S. Demirci, T. Dikici, and A.N. Güllüoğlu, Micro/Nanoscale Surface Modification of Ti6Al4V Alloy for Implant Applications, J. Mater. Eng. Perform., 2022, 31(2), p 1503–1511.

    Article  CAS  Google Scholar 

  6. O. Schulz, N. Eisenreich, S. Kelzenberg, H. Schuppler, J. Neutz, and E. Kondratenko, Non-isothermal and Isothermal Kinetics of High Temperature Oxidation of Micrometer-Sized Titanium Particles in Air, Thermochim. Acta, 2011, 517(1), p 98–104.

    Article  CAS  Google Scholar 

  7. S. Demirci, T. Dikici, and R. Dalmis, Nanoindentation and Corrosion Behavior of Additively Manufactured Ti-6Al-4V Alloy for Biomaterial Applications, J. Mater. Eng. Perform., 2023, 33, p 2133–2145.

    Article  Google Scholar 

  8. C. Veiga, J. Davim, and A. Loureiro, Properties and Applications of Titanium Alloys: A Brief Review, Rev. Adv. Mater. Sci., 2012, 32, p 133–148.

    CAS  Google Scholar 

  9. A. Rajabi, A.R. Mashreghi, and S. Hasani, Non-isothermal Kinetic Analysis of High Temperature Oxidation of Ti–6Al–4V Alloy, J. Alloy. Compd., 2020, 815, 151948.

    Article  CAS  Google Scholar 

  10. Y. Xiong, S. Zhu, F. Wang, and C. Lee, Effect of Vitreous Enamel Coating on the Oxidation Behavior of Ti6Al4V and TiAl Alloys at High Temperatures, J. Coat. Technol. Res., 2008, 5(1), p 93–98.

    Article  Google Scholar 

  11. M. Peters, J. Hemptenmacher, J. Kumpfert, and C. Leyens, Structure and Properties of Titanium and Titanium Alloys, Titanium and Titanium Alloys: Fundamentals and Applications. C. Leyens, M. Peters Ed., Wiley, 2003, p 1–36

    Google Scholar 

  12. I. González de Arrieta, L. González-Fernández, E. Risueño, T. Echániz, and M.J. Tello, Isothermal Oxidation Kinetics of Nitrided Ti-6Al-4V Studied by Infrared Emissivity, Corros. Sci., 2020, 173, 108723.

    Article  Google Scholar 

  13. C.A.R. Maestro, A.H.S. Bueno, and A.M. de Sousa Malafaia, Cyclic Thermal Oxidation Evaluation to Improve Ti6Al4V Surface in Applications as Biomaterial, J. Mater. Eng. Perform., 2019, 28(8), p 4991–4997.

    Article  CAS  Google Scholar 

  14. E. Dong, W. Yu, Q. Cai, L. Cheng, and J. Shi, High-Temperature Oxidation Kinetics and Behavior of Ti–6Al–4V Alloy, Oxid. Met., 2017, 88(5), p 719–732.

    Article  CAS  Google Scholar 

  15. H. Guleryuz and H. Cimenoglu, Oxidation of Ti–6Al–4V Alloy, J. Alloy. Compd., 2009, 472(1), p 241–246.

    Article  CAS  Google Scholar 

  16. W. Jia, W. Zeng, X. Zhang, Y. Zhou, J. Liu, and Q. Wang, Oxidation Behavior and Effect of Oxidation on Tensile Properties of Ti60 Alloy, J. Mater. Sci., 2011, 46(5), p 1351–1358.

    Article  CAS  Google Scholar 

  17. S.J. Qu, S.Q. Tang, A.H. Feng, C. Feng, J. Shen, and D.L. Chen, Microstructural Evolution and High-Temperature Oxidation Mechanisms of a Titanium Aluminide Based Alloy, Acta Mater., 2018, 148, p 300–310.

    Article  CAS  Google Scholar 

  18. P. Ouyang, G. Mi, P. Li, L. He, J. Cao, and X. Huang, Non-isothermal Oxidation Behavior and Mechanism of a High Temperature Near-α Titanium Alloy, Materials, 2018, 11(11), p 2141.

    Article  PubMed  PubMed Central  Google Scholar 

  19. G.B. Mi, X.S. Huang, P.J. Li, J.X. Cao, X. Huang, and C.X. Cao, Non-isothermal Oxidation and Ignition Prediction of Ti-Cr Alloys, Trans. Nonferrous Metals Soc. China, 2012, 22(10), p 2409–2415.

    Article  CAS  Google Scholar 

  20. P. Majumdar, S.B. Singh, and M. Chakraborty, The Influence of Heat Treatment and Role of Boron on Sliding Wear Behaviour of β-Type Ti–35Nb–7.2Zr–5.7Ta Alloy in Dry Condition and in Simulated Body Fluids, J. Mech. Behav. Biomed. Mater., 2011, 4(3), p 284–297.

    Article  CAS  PubMed  Google Scholar 

  21. M. Kaseem and H.C. Choe, Electrochemical and Bioactive Characteristics of the Porous Surface Formed on Ti-Xnb Alloys Via Plasma Electrolytic Oxidation, Surf. Coat. Technol., 2019, 378, 125027.

    Article  CAS  Google Scholar 

  22. Y. Zhang, K. Chu, S. He, B. Wang, W. Zhu, and F. Ren, Fabrication of High Strength, Antibacterial and Biocompatible Ti-5Mo-5Ag Alloy for Medical and Surgical Implant Applications, Mater. Sci. Eng. C, 2020, 106, 110165.

    Article  CAS  Google Scholar 

  23. E. Yılmaz, B. Çakıroğlu, A. Gökçe, F. Findik, H.O. Gulsoy, N. Gulsoy, Ö. Mutlu, and M. Özacar, Novel Hydroxyapatite/Graphene Oxide/Collagen Bioactive Composite Coating on Ti16Nb Alloys by Electrodeposition, Mater. Sci. Eng. C, 2019, 101, p 292–305.

    Article  Google Scholar 

  24. Y. Kaynak, A. Gharibi, U. Yılmaz, U. Köklü, and K. Aslantaş, A Comparison of Flood Cooling, Minimum Quantity Lubrication and High Pressure Coolant on Machining and Surface Integrity of Titanium Ti-5553 Alloy, J. Manuf. Process., 2018, 34, p 503–512.

    Article  Google Scholar 

  25. Y. Kaynak and A. Gharibi, Cryogenic Machining of Titanium Ti-5553 Alloy, J. Manuf. Sci. Eng., 2019, 141(4), p 041012.

    Article  Google Scholar 

  26. B. Mueller, Additive Manufacturing Technologies–Rapid Prototyping to Direct Digital Manufacturing, Assem. Autom., 2012 https://doi.org/10.1108/aa.2012.03332baa.010

    Article  Google Scholar 

  27. W.S.W. Harun, N.S. Manam, M.S.I.N. Kamariah, S. Sharif, A.H. Zulkifly, I. Ahmad, and H. Miura, A Review of Powdered Additive Manufacturing Techniques for Ti-6al-4v Biomedical Applications, Powder Technol., 2018, 331, p 74–97.

    Article  CAS  Google Scholar 

  28. J. Brezinová, R. Hudák, A. Guzanová, D. Draganovská, G. Ižaríková, and J. Koncz, Direct Metal Laser Sintering of Ti6Al4V for Biomedical Applications: Microstructure, Corros. Prop. Mech. Treat. Implants Metals, 2016, 6(7), p 171.

    Google Scholar 

  29. S. Demirci, T. Dikici, M.M. Tünçay, R. Dalmış, N. Kaya, K. Kanbur, F. Sargın, and A.N. Güllüoğlu, Investigation of Surface-Modified EBM Printed Ti-6Al-4V Alloys for Biomedical Applications, Surf. Interfaces, 2022, 34, 102372.

    Article  CAS  Google Scholar 

  30. S. Demirci, R. Dalmış, T. Dikici, M.M. Tünçay, N. Kaya, and A.N. Güllüoğlu, Effect of Surface Modifications of Additively Manufactured Ti-6Al-4V Alloys on Apatite Formation Ability for Biomedical Applications, J. Alloy. Compd., 2021, 887, 161445.

    Article  CAS  Google Scholar 

  31. L. Yang, K. Hsu, B. Baughman, D. Godfrey, F. Medina, M. Menon, and S. Wiener, Introduction to Additive Manufacturing, Additive Manufacturing of Metals: The Technology Materials, Design and Productioned. L. Yang, K. Hsu, B. Baughman, D. Godfrey, F. Medina, M. Menon, and, S. Wiener Ed., Springer International Publishing, Cham, 2017, p 1–31

    Google Scholar 

  32. A. Safdar, L.Y. Wei, A. Snis, and Z. Lai, Evaluation of Microstructural Development in Electron Beam Melted Ti-6Al-4V, Mater Charact, 2012, 65, p 8–15.

    Article  CAS  Google Scholar 

  33. F. Estupinán-López, C. Orquiz-Muela, C. Gaona-Tiburcio, J. Cabral-Miramontes, R.G. Bautista-Margulis, D. Nieves-Mendoza, E. Maldonado-Bandala, F. Almeraya-Calderón, and A.J. Lopes, Oxidation Kinetics of Ti-6Al-4V Alloys by Conventional and Electron Beam Additive Manufacturing, Materials, 2023, 16(3), p 1187.

    Article  PubMed  PubMed Central  Google Scholar 

  34. A. Fernandez, P. Sette, M. Echegaray, J. Soria, D. Salvatori, G. Mazza, and R. Rodriguez, Clean Recovery of Phenolic Compounds, Pyro-Gasification Thermokinetics, and Bioenergy Potential of Spent Agro-Industrial Bio-Wastes, Biomass Convers. Bioref., 2022, 13, p 12509–12526.

    Article  Google Scholar 

  35. A. Fernandez, A. Saffe, G. Mazza, and R. Rodriguez, Nonisothermal Drying Kinetics of Biomass Fuels by Thermogravimetric Analysis under Oxidative and Inert Atmosphere, Drying Technol., 2017, 35(2), p 163–172.

    Article  CAS  Google Scholar 

  36. C.D. Doyle, Estimating Isothermal Life from Thermogravimetric Data, J. Appl. Polym. Sci., 1962, 6(24), p 639–642.

    Article  CAS  Google Scholar 

  37. O. Takeo, A New Method of Analyzing Thermogravimetric Data, Bull. Chem. Soc. Jpn, 1965, 38(11), p 1881–1886.

    Article  Google Scholar 

  38. J.H. Flynn and L.A. Wall, A Quick, Direct Method for the Determination of Activation Energy from Thermogravimetric Data, J. Polym. Sci. Part C: Polym. Lett., 1966, 4(5), p 323–328.

    CAS  Google Scholar 

  39. J.H. Flynn, The Isoconversional Method for Determination of Energy of Activation at Constant Heating Rates, J. Therm. Anal., 1983, 27(1), p 95–102.

    Article  CAS  Google Scholar 

  40. T. Dikici, S. Demirci, M.M. Tünçay, B.K. Yildirim, and N. Kaya, Effect of Heating Rate on Structure, Morphology and Photocatalytic Properties of TiO2 Particles: Thermal Kinetic and Thermodynamic Studies, J. Sol-Gel Sci. Technol., 2021, 97(3), p 622–637.

    Article  CAS  Google Scholar 

  41. H.E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 1957, 29(11), p 1702–1706.

    Article  CAS  Google Scholar 

  42. S. Demirci, T. Dikici, M.M. Tünçay, and N. Kaya, A Study of Heating Rate Effect on the Photocatalytic Performances of ZnO Powders Prepared by Sol-Gel Route: Their Kinetic and Thermodynamic Studies, Appl. Surf. Sci., 2020, 507, 145083.

    Article  CAS  Google Scholar 

  43. M.J. Starink, The Determination of Activation Energy from Linear Heating Rate Experiments: A Comparison of the Accuracy of Isoconversion Methods, Thermochim. Acta, 2003, 404(1), p 163–176.

    Article  CAS  Google Scholar 

  44. W. Tang, Y. Liu, H. Zhang, and C. Wang, New Approximate Formula for Arrhenius Temperature Integral, Thermochim. Acta, 2003, 408(1), p 39–43.

    Article  CAS  Google Scholar 

  45. A.W. Coats and J.P. Redfern, Kinetic Parameters from Thermogravimetric Data, Nature, 1964, 201(4914), p 68–69.

    Article  CAS  Google Scholar 

  46. A.W. Coats and J.P. Redfern, Kinetic Parameters from Thermogravimetric Data. II, J. Polym. Sci. Part B Polym. Lett., 1965, 3(11), p 917–920.

    Article  CAS  Google Scholar 

  47. M. Ansariniya, A. Seifoddini, and S. Hasani, (Fe0.9Ni0.1)77Mo5P9C7.5B1.5 Bulk Metallic Glass Matrix Composite Produced by Partial Crystallization: The Non-isothermal Kinetic Analysis, J. Alloys Compd., 2018, 763, p 606–612.

    Article  CAS  Google Scholar 

  48. Z. Jaafari, A. Seifoddini, S. Hasani, and P. Rezaei-Shahreza, Kinetic Analysis of Crystallization Process in [(Fe0.9Ni0.1)77Mo5P9C7.5B1.5]100−xCux (x = 0.1 at.%) BMG, J. Therm. Anal. Calorim., 2018, 134(3), p 1565–1574.

    Article  CAS  Google Scholar 

  49. V.M. Gorbachev, A Solution of the Exponential Integral in the Non-isothermal Kinetics for Linear Heating, J. Therm. Anal., 1975, 8(2), p 349–350.

    Article  CAS  Google Scholar 

  50. P. Rezaei-Shahreza, A. Seifoddini, and S. Hasani, Non-isothermal Kinetic Analysis of Nano-Crystallization Process in (Fe41Co7Cr15Mo14Y2C15)94B6 Amorphous Alloy, Thermochim. Acta, 2017, 652, p 119–125.

    Article  CAS  Google Scholar 

  51. A. Brems, J. Baeyens, J. Beerlandt, and R. Dewil, Thermogravimetric Pyrolysis of Waste Polyethylene-Terephthalate and Polystyrene: A Critical Assessment of Kinetics Modelling, Resour. Conserv. Recycl., 2011, 55(8), p 772–781.

    Article  Google Scholar 

  52. Y. Chen and Q. Wang, Thermal Oxidative Degradation Kinetics of Flame-Retarded Polypropylene with intumescent Flame-Retardant Master Batches In Situ Prepared in Twin-Screw Extruder, Polym. Degrad. Stab., 2007, 92(2), p 280–291.

    Article  CAS  Google Scholar 

  53. W. Gao, K. Chen, Z. Xiang, F. Yang, J. Zeng, J. Li, R. Yang, G. Rao, and H. Tao, Kinetic Study on Pyrolysis of Tobacco Residues from the Cigarette Industry, Ind. Crops Prod., 2013, 44, p 152–157.

    Article  CAS  Google Scholar 

  54. M.S. Masnadi, R. Habibi, J. Kopyscinski, J.M. Hill, X. Bi, C.J. Lim, N. Ellis, and J.R. Grace, Fuel Characterization and Co-Pyrolysis Kinetics of Biomass and Fossil Fuels, Fuel, 2014, 117, p 1204–1214.

    Article  CAS  Google Scholar 

  55. T. Takahashi, Y. Minamino, H. Hirasawa, and T. Ouchi, High-Temperature Oxidation and Its Kinetics Study of Ti; Al and Ti; V Alloys in Air, Mater. Trans., 2014, 55(2), p 290–297.

    Article  CAS  Google Scholar 

  56. B. Lah, D. Klinar, and B. Likozar, Pyrolysis of Natural, Butadiene, Styrene–Butadiene Rubber and Tyre Components: Modelling Kinetics and Transport Phenomena at Different Heating Rates and Formulations, Chem. Eng. Sci., 2013, 87, p 1–13.

    Article  CAS  Google Scholar 

  57. Z. Liang, B. Tang, Y. Gui, and Q. Zhao, High-Temperature Oxidation Behavior of the Ti-6Al-4V Alloy Manufactured by Selective Laser Sintering, JOM, 2019, 71(10), p 3600–3605.

    Article  Google Scholar 

  58. A. Yang, Y. Wu, Y. Duan, M. Peng, S. Zheng, M. Li, and J. Yu, The Effect of Alloying Elements in Ti-5Mo-5V-8Cr-3Al Alloy on Growth Kinetics of TiB Whiskers in Boride Layer, Mater. Des., 2023, 225, 111478.

    Article  CAS  Google Scholar 

  59. S. Frangini, A. Mignone, and F. de Riccardis, Various Aspects of the Air Oxidation Behaviour of a Ti6Al4V Alloy at Temperatures in the Range 600–700°C, J. Mater. Sci., 1994, 29(3), p 714–720.

    Article  CAS  Google Scholar 

  60. I. Donskoy and A. Kozlov, Thermogravimetric Study of the Kinetics of the Reaction C + CO2 under Pore-Diffusion Control, Energies, 2021, 14(7), p 1886.

    Article  CAS  Google Scholar 

  61. C. de Formanoir, S. Michotte, O. Rigo, L. Germain, and S. Godet, Electron Beam Melted Ti–6Al–4V: Microstructure, Texture and Mechanical Behavior of the As-Built and Heat-Treated Material, Mater. Sci. Eng. A, 2016, 652, p 105–119.

    Article  Google Scholar 

  62. X. Tan, Y. Kok, W.Q. Toh, Y.J. Tan, M. Descoins, D. Mangelinck, S.B. Tor, K.F. Leong, and C.K. Chua, Revealing Martensitic Transformation and α/β Interface Evolution in Electron Beam Melting Three-Dimensional-Printed Ti-6Al-4V, Sci. Rep., 2016, 6(1), p 26039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. X. Tan, Y. Kok, Y.J. Tan, G. Vastola, Q.X. Pei, G. Zhang, Y.W. Zhang, S.B. Tor, K.F. Leong, and C.K. Chua, An Experimental and Simulation Study on Build Thickness Dependent Microstructure for Electron Beam Melted Ti–6Al–4V, J. Alloys Compd., 2015, 646, p 303–309.

    Article  CAS  Google Scholar 

  64. S. Kumar, T.S.N. Sankara Narayanan, S. Ganesh Sundara Raman, and S.K. Seshadri, Thermal Oxidation of Ti6Al4V Alloy: Microstructural and Electrochemical Characterization, Mater. Chem. Phys., 2010, 119(1), p 337–346.

    Article  CAS  Google Scholar 

  65. D. Siva Rama Krishna, Y.L. Brama, and Y. Sun, Thick Rutile Layer on Titanium for Tribological Applications, Tribol. Int., 2007, 40(2), p 329–334.

    Article  CAS  Google Scholar 

  66. Y. Luo, W. Chen, M. Tian, and S. Teng, Thermal Oxidation of Ti6Al4V Alloy and Its Biotribological Properties under Serum Lubrication, Tribol. Int., 2015, 89, p 67–71.

    Article  CAS  Google Scholar 

  67. Y. Zhang, G.R. Ma, X.C. Zhang, S. Li, and S.T. Tu, Thermal Oxidation of Ti-6Al–4V Alloy and Pure Titanium under External Bending Strain: Experiment and Modelling, Corros. Sci., 2017, 122, p 61–73.

    Article  CAS  Google Scholar 

  68. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 3rd ed. Taylor & Francis, 1992.

    Book  Google Scholar 

  69. D.A.H. Hanaor and C.C. Sorrell, Review of the Anatase to Rutile Phase Transformation, J. Mater. Sci., 2011, 46(4), p 855–874.

    Article  CAS  Google Scholar 

  70. H.L. Ma, J.Y. Yang, Y. Dai, Y.B. Zhang, B. Lu, and G.H. Ma, Raman Study of Phase Transformation of TiO2 Rutile Single Crystal Irradiated by Infrared Femtosecond Laser, Appl. Surf. Sci., 2007, 253(18), p 7497–7500.

    Article  CAS  Google Scholar 

  71. I. Lukačević, S.K. Gupta, P.K. Jha, and D. Kirin, Lattice Dynamics and Raman Spectrum of Rutile TiO2: The Role of Soft Phonon Modes in Pressure Induced Phase Transition, Mater. Chem. Phys., 2012, 137(1), p 282–289.

    Article  Google Scholar 

  72. E.J. Ekoi, A. Gowen, R. Dorrepaal, and D.P. Dowling, Characterisation of Titanium Oxide Layers Using Raman Spectroscopy and Optical Profilometry: Influence of Oxide Properties, Res. Phys., 2019, 12, p 1574–1585.

    Google Scholar 

Download references

Acknowledgments

The authors are indebted to Marmara University, Dokuz Eylül University and Katip Çelebi University for infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selim Demirci.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirci, S., Kıran Yıldırım, B., Tünçay, M.M. et al. Non-isothermal Kinetic Analysis of High Temperature Oxidation of Additively Manufactured Ti-6Al-4V Alloy. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09557-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09557-6

Keywords

Navigation