Skip to main content
Log in

Transformation-Induced Plasticity in 304 and 304L Stainless Steels and Its Effect on Tensile Behavior and Anisotropy

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This research has studied the impact of transformation-induced plasticity on the tensile properties and anisotropy of work-hardened 304 and 304L stainless steel sheet samples. For this purpose, cold rolling was carried out with up to 40% reduction in thickness to produce strain-induced α′-martensite. The optical metallography, XRD, and feritscope testing were used to study the microstructures of the specimens before and after cold rolling operation. It was observed that 304 stainless steel samples showed a higher volume fraction of α′-martensite than 304L samples, i.e., 0.456 and 0.321 for 304 and 304L samples, respectively. This is due to the strain-induced martensitic transformation after 40% cold rolling and the lower SFE in 304 stainless steel. In addition, uniaxial tensile testing was carried out to study the tensile properties and anisotropy of the specimens. Anisotropy coefficients were calculated for solution treated, 20% and 40% cold rolled sheet samples from the tensile tests with respect to the rolling, diagonal and transverse directions. Transformation-induced plasticity in the 304 and 304L samples resulted in a reduction in normal anisotropy, which reduces the deep drawability. The calculated normal anisotropy in 304 samples was less than 304L due to the higher volume fraction of α′-martensite in 304 samples. Therefore, it is predicted that the cold-rolled 304L samples would show higher deep drawability compared to 304 samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Ahmadi, B. Mohammad Sadeghi, and H. Arabi, Experimental and Numerical Investigation of V-Bent Anisotropic 304L SS Sheet with Spring-Forward Considering Deformation-Induced Martensitic Transformation, Mater. Des., 2017, 123, p 211–222. https://doi.org/10.1016/J.MATDES.2017.03.040

    Article  CAS  Google Scholar 

  2. B. Roy, R. Kumar, and J. Das, Effect of Cryorolling on the Microstructure and Tensile Properties of Bulk Nano-Austenitic Stainless Steel, Mater. Sci. Eng. A, 2015, 631, p 241–247. https://doi.org/10.1016/J.MSEA.2015.02.050

    Article  CAS  Google Scholar 

  3. Y. Miao, K. Mo, Z. Zhou, X. Liu, K.C. Lan, G. Zhang, M.K. Miller, K.A. Powers, Z.G. Mei, J.S. Park, J. Almer, and J.F. Stubbins, On the Microstructure and Strengthening Mechanism in Oxide Dispersion-Strengthened 316 Steel: A Coordinated Electron Microscopy, Atom Probe Tomography and In Situ Synchrotron Tensile Investigation, Mater. Sci. Eng. A, 2015, 639, p 585–596. https://doi.org/10.1016/J.MSEA.2015.05.064

    Article  CAS  Google Scholar 

  4. N. Li, Y.D. Wang, W.J. Liu, Z.N. An, J.P. Liu, R. Su, J. Li, and P.K. Liaw, In Situ X-ray Microdiffraction Study of Deformation-Induced Phase Transformation in 304 Austenitic Stainless Steel, Acta Mater., 2014, 64, p 12–23. https://doi.org/10.1016/J.ACTAMAT.2013.11.001

    Article  CAS  Google Scholar 

  5. J.H. Kim, S.W. Choi, D.H. Park, and J.M. Lee, Charpy Impact Properties of Stainless Steel Weldment in Liquefied Natural Gas Pipelines: Effect of Low Temperatures, Mater. Des., 2015, 65, p 914–922. https://doi.org/10.1016/J.MATDES.2014.09.085

    Article  CAS  Google Scholar 

  6. M. Naghizadeh and H. Mirzadeh, Microstructural Evolutions During Annealing of Plastically Deformed AISI 304 Austenitic Stainless Steel: Martensite Reversion, Grain Refinement, Recrystallization, and Grain Growth, Metall. Mater. Trans. A., 2016, 47(8), p 4210–4216. https://doi.org/10.1007/s11661-016-3589-1

    Article  CAS  Google Scholar 

  7. M. Ghannadi, H. Hosseini, B.M. Sadeghi, B. Mirzakhani, and M.T. Honaramooz, Effects of Rapid Infrared Heating and Cryogenic Cooling on the Tensile Properties and Fracture Behavior of Al-Cu-Mg, Iran. J. Mater. Sci., 2021, 18, p 1–9. https://doi.org/10.22068/ijmse.2242

    Article  Google Scholar 

  8. A. Amininejad, R. Jamaati, and S.J. Hosseinipour, Achieving Superior Strength and High Ductility in AISI 304 Austenitic Stainless Steel Via Asymmetric Cold Rolling, Mater. Sci. Eng. A, 2019, 767, p 138433. https://doi.org/10.1016/j.msea.2019.138433

    Article  CAS  Google Scholar 

  9. P. Mallick, N.K. Tewary, S.K. Ghosh, and P.P. Chattopadhyay, Effect of Cryogenic Deformation on Microstructure and Mechanical Properties of 304 Austenitic Stainless Steel, Mater. Charact., 2017, 133, p 77–86. https://doi.org/10.1016/J.MATCHAR.2017.09.027

    Article  CAS  Google Scholar 

  10. C.X. Huang, G. Yang, Y.L. Gao, S.D. Wu, and Z.F. Zhang, Influence of Processing Temperature on the Microstructures and Tensile Properties of 304L Stainless Steel by ECAP, Mater. Sci. Eng. A, 2008, 485, p 643–650. https://doi.org/10.1016/J.MSEA.2007.08.067

    Article  Google Scholar 

  11. S.V. Dobatkin, O.V. Rybalchenko, N.A. Enikeev, A.A. Tokar, and M.M. Abramova, Formation of Fully Austenitic Ultrafine-Grained High Strength State in Metastable Cr–Ni–Ti Stainless Steel by Severe Plastic Deformation, Mater. Lett., 2016, 166, p 276–279. https://doi.org/10.1016/J.MATLET.2015.12.094

    Article  CAS  Google Scholar 

  12. A. Hedayati, A. Najafizadeh, A. Kermanpur, and F. Forouzan, The Effect of Cold Rolling Regime on Microstructure and Mechanical Properties of AISI 304L Stainless Steel, J. Mater. Process. Technol., 2010, 210, p 1017–1022. https://doi.org/10.1016/j.jmatprotec.2010.02.010

    Article  CAS  Google Scholar 

  13. A. Amininejad, R. Jamaati, and S.J. Hosseinipour, Improvement of Strength-Ductility Balance of SAE 304 Stainless Steel by Asymmetric Cross Rolling, Mater. Chem. Phys., 2020, 256, p 123668. https://doi.org/10.1016/J.MATCHEMPHYS.2020.123668

    Article  CAS  Google Scholar 

  14. S.S.F. De Dafé, F.L. Sicupira, F.C.S. Matos, N.S. Cruz, D.R. Moreira, and D.B. Santos, Effect of Cooling Rate on (ε, α’) Martensite Formation in Twinning/Transformation-Induced Plasticity Fe-17Mn-0.06C Steel, Mater. Res., 2013, 16, p 1229–1236. https://doi.org/10.1590/S1516-14392013005000129

    Article  Google Scholar 

  15. G.B. Olson and M. Cohen, Kinetics of Strain-Induced Martensitic Nucleation, Metall. Trans. A., 1975, 6, p 791–795. https://doi.org/10.1007/BF02672301

    Article  Google Scholar 

  16. S.S. Hecker, M.G. Stout, K.P. Staudhammer, and J.L. Smith, Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part I. Magnetic Measurements and Mechanical Behavior, Metall. Trans. A., 1982, 13, p 619–626. https://doi.org/10.1007/BF02644427

    Article  CAS  Google Scholar 

  17. M.J. Sohrabi, M. Naghizadeh, and H. Mirzadeh, Deformation-Induced Martensite in Austenitic Stainless Steels: A Review, Arch. Civ. Mech. Eng., 2020, 20(124), p 619. https://doi.org/10.1007/s43452-020-00130-1

    Article  Google Scholar 

  18. G.B. Olson and M. Cohen, A Mechanism for the Strain-Induced Nucleation of Martensitic Transformations, J. Less Common. Met., 1972, 28, p 107–118. https://doi.org/10.1016/0022-5088(72)90173-7

    Article  CAS  Google Scholar 

  19. A.K. De, J.G. Speer, D.K. Matlock, D.C. Murdock, M.C. Mataya, and R.J. Comstock, Deformation-Induced Phase Transformation and Strain Hardening in Type 304 Austenitic Stainless Steel, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2006, 37, p 1875–1886. https://doi.org/10.1007/S11661-006-0130-Y

    Article  Google Scholar 

  20. M. Naghizadeh and H. Mirzadeh, Modeling the Kinetics of Deformation-Induced Martensitic Transformation in AISI 316 Metastable Austenitic Stainless Steel, Vacuum, 2018, 157, p 243–248. https://doi.org/10.1016/j.vacuum.2018.08.066

    Article  CAS  Google Scholar 

  21. J. Talonen and H. Hänninen, Damping Properties of Austenitic Stainless Steels Containing Strain-Induced Martensite, Metall. Mater. Trans. A., 2004, 35, p 2401–2406. https://doi.org/10.1007/S11661-006-0220-X

    Article  Google Scholar 

  22. Y. Shen, X. Li, X. Sun, Y. Wang, L.Z.-M.S. and, U. 2012, Twinning and Martensite in a 304 Austenitic Stainless Steel, Elsevier. (n.d.).

  23. J.A. Lichtenfeld, M.C. Mataya, and C.J. Van Tyne, Effect of Strain Rate on Stress-Strain Behavior of Alloy 309 and 304L Austenitic Stainless Steel, Metall. Mater. Trans. A., 2006, 37, p 147–161. https://doi.org/10.1007/S11661-006-0160-5

    Article  Google Scholar 

  24. P.J. Ferreira, J.B. Vander Sande, M.A. Fortes, and A. Kyrolainen, Microstructure Development During High-Velocity Deformation, Metall. Mater. Trans. A., 2004, 35, p 3091–3101. https://doi.org/10.1007/S11661-004-0054-3

    Article  Google Scholar 

  25. J. Talonen and H. Hänninen, Formation of Shear Bands and Strain-Induced Martensite During Plastic Deformation of Metastable Austenitic Stainless Steels, Acta Mater., 2007, 55, p 6108–6118. https://doi.org/10.1016/J.ACTAMAT.2007.07.015

    Article  CAS  Google Scholar 

  26. A. Zergani, H. Mirzadeh, and R. Mahmudi, Evolutions of Mechanical Properties of AISI 304L stainLess Steel under Shear Loading, Mater. Sci. Eng. A, 2020, 791, p 139667. https://doi.org/10.1016/J.MSEA.2020.139667

    Article  CAS  Google Scholar 

  27. V. Shrinivas, S.K. Varma, and L.E. Murr, Deformation-Induced Martensitic Characteristics in 304 and 316 Stainless Steels During Room-Temperature Rolling, Metall. Mater. Trans. A., 1995, 26, p 661–671. https://doi.org/10.1007/BF02663916

    Article  Google Scholar 

  28. C. Zheng, C. Liu, M. Ren, H. Jiang, and L. Li, Microstructure and Mechanical Behavior of an AISI 304 Austenitic Stainless Steel Prepared by Cold- or Cryogenic-Rolling and Annealing, Mater. Sci. Eng. A, 2018, 724, p 260–268. https://doi.org/10.1016/j.msea.2018.03.105

    Article  CAS  Google Scholar 

  29. M. Naghizadeh and H. Mirzadeh, Effects of Grain Size on Mechanical Properties and Work-Hardening Behavior of AISI 304 Austenitic Stainless Steel, Steel Res. Int., 2019, 90(10), p 1900153. https://doi.org/10.1002/srin.201900153

    Article  CAS  Google Scholar 

  30. K. Nohara, Y. Ono, N.O.- Tetsu-to-Hagané, U. (1977) Composition and grain size dependencies of strain-induced martensitic transformation in metastable austenitic stainless steels, Jstage.Jst.Go.Jp. (n.d.).

  31. M. Soleimani, A. Kalhor, and H. Mirzadeh, Transformation-Induced Plasticity (TRIP) in Advanced Steels: A Review, Mater. Sci. Eng. A, 2020, 795, p 140023. https://doi.org/10.1016/J.MSEA.2020.140023

    Article  CAS  Google Scholar 

  32. K. Al-Fadhalah and M. Aleem, Microstructure Refinement and Mechanical Properties of 304 Stainless Steel by Repetitive Thermomechanical Processing, Metall. Mater. Trans. A, 2018, 49, p 1121–1139. https://doi.org/10.1007/S11661-018-4475-9

    Article  CAS  Google Scholar 

  33. J. Talonen, P. Aspegren, and H. Hänninen, Comparison of Different Methods for Measuring Strain Induced α′-Martensite Content in Austenitic Steels, Mater. Sci. Technol., 2004, 20, p 1506–1512. https://doi.org/10.1179/026708304X4367

    Article  Google Scholar 

  34. STM Standards, Vol. 03.01. Philadelphia: ASTM, 1984.

  35. P. Kori, B.H. Vadavadagi, and R.K. Khatirkar, Hot Deformation Characteristics of ASS-304 Austenitic Stainless Steel by Tensile Tests, Mater. Today Proc., 2020, 28, p 1895–1898. https://doi.org/10.1016/J.MATPR.2020.05.303

    Article  CAS  Google Scholar 

  36. Nishiyama Z. Martensitic transformation. London: Butterworths; 1982., (n.d.).

  37. R. Singh, D. Singh, D. Sachan, S.D. Yadav, and A. Kumar, (2021) Microstructural Evolution and Mechanical Properties of Constrained Groove-Pressed 304 Austenitic Stainless Steel, J. Mater. Eng. Perform., 2021, 301(30), p 290–301. https://doi.org/10.1007/S11665-020-05372-X

    Article  Google Scholar 

  38. K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng. R Reports., 2009, 65, p 39–104. https://doi.org/10.1016/J.MSER.2009.03.001

    Article  Google Scholar 

  39. K. Mumtaz, S. Takahashi, J. Echigoya, L. Zhang, Y. Kamada, and M. Sato, Temperature Dependence of Martensitic Transformation in Austenitic Stainless Steel, J. Mater. Sci. Lett., 2003, 226(22), p 423–427. https://doi.org/10.1023/A:1022999309138

    Article  Google Scholar 

  40. M. Naghizadeh and H. Mirzadeh, Microstructural Evolutions During Reversion Annealing of Cold-Rolled AISI 316 Austenitic Stainless Steel, Metall, Mater. Trans. A Phys. Metall. Mater. Sci., 2018, 49, p 2248–2256. https://doi.org/10.1007/S11661-018-4583-6

    Article  CAS  Google Scholar 

  41. A.D. Schino, I. Salvatori, and J.M. Kenny, Effects of Martensite Formation and Austenite Reversion on Grain Refining of AISI 304 Stainless Steel, J. Mater. Sci., 2002, 37(21), p 4561–4565. https://doi.org/10.1023/A:1020631912685

    Article  Google Scholar 

  42. R.O. Santos et al., Damage Identification Parameters of Dual-Phase 600–800 Steels Based on Experimental Void Analysis and Finite Element Simulations, J. Mater. Res. Technol., 2019, 8(1), p 644–659. https://doi.org/10.1016/j.jmrt.2018.04.017

    Article  CAS  Google Scholar 

  43. Z. Marciniak, J.L. Duncan, S.J. Hu, Mechanics of Sheet Metal Forming, Butterworth-Heinemann, Second edition, 2002.

  44. Daehn, GS. (2006) ASM handbook, volume 14b, Metalworking: Sheet Forming–Appendix D. ASM International: London. pp 405-418

Download references

Funding

The research has no funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Bahman Mirzakhani.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiei, B., Sadeghi, B.M., Mirzakhani, B. et al. Transformation-Induced Plasticity in 304 and 304L Stainless Steels and Its Effect on Tensile Behavior and Anisotropy. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09478-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09478-4

Keywords

Navigation