Skip to main content
Log in

Oxidation Behavior of Ni-Based Oxide Dispersion-Strengthened Alloy Fabricated by Direct Energy Deposition at 1100 °C

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM) produced Ni-based oxide dispersion-strengthened (ODS) alloy is promising for fabricating intrinsic structural parts under high-temperature operating condition, while little effort has been focused on the oxidation behavior of such alloys by AM. In this study, cyclic oxidation behavior and microstructure of additively manufactured Ni-based ODS alloy were evaluated up to 1100 °C for 2040 thermal cycles. The oxide layer and microstructure were characterized at various thermal cycles using scanning electron microscope (SEM), transmission electron microscope (TEM), and x-ray diffractometer (XRD), respectively. The results showed ultrafine Y-rich particles (<20 nm) in both as-printed and oxidized ODS coupons. In the early oxidation stages, continuous Al2O3 formed underneath oxide mixture of Cr2O3 and NiO with oxide spallation of Cr2O3 and NiO due to the thermal expansion mismatch at later oxidation stages. Uniform oxide dispersion of yttria contributed the stability of Al2O3 layer and thus preserved γ′ phase in the alloy substrate as well as fine grain structure by reducing elemental diffusion and blocking dislocation movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.S. Benjamin, Dispersion Strengthened Superalloys by Mechanical Alloying, Metall. Trans., 1970, 1(10), p 2943–2951.

    Article  CAS  Google Scholar 

  2. S. Weinbruch, A. Anastassiadis, H.M. Ortner, H.P. Martinz, and P. Wilhartitz, On the Mechanism of High-Temperature Oxidation of ODS Superalloys: Significance of Yttrium Depletion Within the Oxide Scales, Oxid. Metals, 1999, 51(1–2), p 111–128.

    Article  CAS  Google Scholar 

  3. P.S. Gilman and J.S. Benjamin, Mechanical Alloying, Annu. Rev. Mater. Sci., 1983, 13(1), p 279–300.

    Article  CAS  Google Scholar 

  4. H.K.D.H. Bhadeshia, Recrystallisation of Practical Mechanically Alloyed Iron-Base and Nickel-Base Superalloys, Mater. Sci. Eng. A, 1997, 223(1), p 64–77.

    Article  Google Scholar 

  5. M. Durand-Charre, The Microstructure of Superalloys, Routledge, London, 2017.

    Book  Google Scholar 

  6. T.A. Ramanarayanan, M. Raghavan, and R. Petkovic-Luton, The Characteristics of Alumina Scales Formed on Fe-Based Yttria-Dispersed Alloys, J. Electrochem. Soc., 1984, 131(4), p 923–931.

    Article  CAS  Google Scholar 

  7. B.A. Pint and K.B. Alexander, Grain Boundary Segregation of Cation Dopants in α-Al2O3 Scales, J. Electrochem. Soc., 1998, 145(6), p 1819–1829.

    Article  CAS  Google Scholar 

  8. D. Sun, C. Liang, J. Shang, J. Yin, Y. Song, W. Li, T. Liang, and X. Zhang, Effect of Y2O3 Contents on Oxidation Resistance at 1150°C and Mechanical Properties at Room Temperature of ODS Ni-20Cr-5Al Alloy, Appl. Surf. Sci., 2016, 385, p 587–596.

    Article  CAS  Google Scholar 

  9. W.J. Quadakkers, Growth Mechanisms of Oxide Scales on ODS Alloys in the Temperature Range 1000–1100°C, Mater. Corros., 1990, 41(12), p 659–668.

    Article  CAS  Google Scholar 

  10. J.P. Buban, K. Matsunaga, J. Chen, N. Shibata, W.Y. Ching, T. Yamamoto, and Y. Ikuhara, Grain Boundary Strengthening in Alumina by Rare Earth Impurities, Science, 2006, 311(5758), p 212–215.

    Article  CAS  PubMed  Google Scholar 

  11. Z. Min, S.N. Parbat, L. Yang, B. Kang, and M.K. Chyu, Fabrication and Characterization of Additive Manufactured Nickel-Based Oxide Dispersion Strengthened Coating Layer for High-Temperature Application, J. Eng. Gas Turbines Power, 2018, 140(6), p 062101.

    Article  Google Scholar 

  12. E. Chia, B.S. Kang, M. Zheng, Y. Li, and M. Chyu, Development of ODS Coating for High Temperature Turbine Components Using DED Additive Manufacturing, in ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition (2018)

  13. L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar, and E. Mittemeijer, Growth Kinetics and Mechanisms of Aluminum-Oxide Films Formed by Thermal Oxidation of Aluminum, J. Appl. Phys., 2002, 92, p 1649–1656.

    Article  CAS  Google Scholar 

  14. G.A. Hope and I.M. Ritchie, Mechanism of Chromium Oxidation, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, 1981, 77(11), p 2621–2631.

    CAS  Google Scholar 

  15. Y. Zhai, Y. Chen, Y. Zhao, H. Long, X. Li, Q. Deng, H. Lu, X. Yang, G. Yang, W. Li, L. Yang, S. Mao, Z. Zhang, A. Li, and X. Han, Initial Oxidation of Ni-Based Superalloy and Its Dynamic Microscopic Mechanisms: The Interface Junction Initiated Outwards Oxidation, Acta Mater., 2021, 215, p 116991.

    Article  CAS  Google Scholar 

  16. B. Ahmad and P. Fox, STEM Analysis of the Transient Oxidation of a Ni-20Cr Alloy at High Temperature, Oxid. Metals, 1999, 52(1), p 113–138.

    Article  CAS  Google Scholar 

  17. A. AlGahtani, S. AlMutairi, A.Y. Adesina, and B. AlMangour, Oxidation Performance of Inconel 718 Alloy Fabricated by Directed Energy Deposition, J. Mater. Eng. Perform., 2023. https://doi.org/10.1007/s11665-023-08785-6.

    Article  Google Scholar 

  18. T. Sanviemvongsak, D. Monceau, C. Desgranges, and B. Macquaire, Intergranular Oxidation of Ni-Base Alloy 718 with a Focus on Additive Manufacturing, Corros. Sci., 2020, 170, p 108684.

    Article  CAS  Google Scholar 

  19. Y.-J. Kang, S. Yang, Y.-K. Kim, B. AlMangour, and K.-A. Lee, Effect of Post-treatment on the Microstructure and High-Temperature Oxidation Behaviour of Additively Manufactured Inconel 718 Alloy, Corros. Sci., 2019, 158, p 108082.

    Article  CAS  Google Scholar 

  20. T. Sanviemvongsak, D. Monceau, M. Madelain, C. Desgranges, J. Smialek, and B. Macquaire, Cyclic Oxidation of Alloy 718 Produced by Additive Manufacturing Compared to a Wrought-718 Alloy, Corros. Sci., 2021, 192, p 109804.

    Article  CAS  Google Scholar 

  21. S. Dryepondt, M.M. Kirka, and F.A. List III, Oxidation Behavior of Ni-Based Alloys Fabricated by Additive Manufacturing, NACE CORROSION, NACE, 2019, pp NACE-2019-13558

  22. C. Guo, Z. Yu, C. Liu, X. Li, Q. Zhu, and R. Mark Ward, Effects of Y2O3 Nanoparticles on the High-Temperature Oxidation behavior of IN738LC Manufactured by Laser Powder Bed Fusion, Corros. Sci., 2020, 171, p 108715.

    Article  CAS  Google Scholar 

  23. B.S. Kang and C. Ma, Development of ODS Coating for Critical Turbine Components Using DED Additive Manufacturing, in ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, 2020

  24. B.A. Pint, P.F. Tortorelli, and I.G. Wright, Effect of Cycle Frequency on High-Temperature Oxidation Behavior of Alumina-Forming Alloys, Oxid. Metals, 2002, 58(1), p 73–101.

    Article  CAS  Google Scholar 

  25. C. Kenel, A. De Luca, S.S. Joglekar, C. Leinenbach, and D.C. Dunand, Evolution of Y2O3 Dispersoids During Laser Powder Bed Fusion of Oxide Dispersion Strengthened Ni-Cr-Al-Ti γ/γ’ Superalloy, Addit. Manuf., 2021, 47, p 102224.

    CAS  Google Scholar 

  26. J.R. Rieken, I.E. Anderson, M.J. Kramer, G.R. Odette, E. Stergar, and E. Haney, Reactive Gas Atomization Processing for Fe-Based ODS Alloys, J. Nucl. Mater., 2012, 428(1), p 65–75.

    Article  CAS  Google Scholar 

  27. L. Ma, B.S.J. Kang, M.A. Alvin, and C.C. Huang, Characterization of Oxide-Dispersion-Strengthened (ODS) Alloy Powders Processed by Mechano-Chemical-Bonding (MCB) and Balling Milling (BM), Kona Powder Part. J., 2014, 31, p 146–155.

    Article  Google Scholar 

  28. C. Ma, K. Rozman, D. Straub, O. Dogan, S. Parbat, M. Chyu, and B. Kang, Investigation of Microstructure and Mechanical Properties of Additive Manufacturing Fabricated Oxide Dispersion Strengthening (ODS) IN718 Alloys, 2023, pp. 75–83

  29. M. Grandhi, C. Ma, Z. Liu, and B. Kang, Microstructural Characterization and Properties of Laser-DED Built Oxide Dispersion Strengthened SS 316 L, Manuf. Lett., 2022, 33, p 758–764.

    Article  Google Scholar 

  30. S. Ukai and M. Fujiwara, Perspective of ODS Alloys Application in Nuclear Environments, J. Nucl. Mater., 2002, 307–311, p 749–757.

    Article  Google Scholar 

  31. D. Naumenko, B. Pint, and W. Quadakkers, Current Thoughts on Reactive Element Effects in Alumina-Forming Systems. In Memory of John Stringer, Oxid. Metals, 2016, 86, p 1–43.

    Article  CAS  Google Scholar 

  32. B. Wahlmann, F. Galgon, A. Stark, S. Gayer, N. Schell, P. Staron, and C. Körner, Growth and Coarsening Kinetics of Gamma Prime Precipitates in CMSX-4 Under Simulated Additive Manufacturing Conditions, Acta Mater., 2019, 180, p 84–96.

    Article  CAS  Google Scholar 

  33. C.S. Giggins and F.S. Pettit, Oxidation of Ni-Cr-Al Alloys Between 1000° and 1200°C, J. Electrochem. Soc., 1971, 118(11), p 1782.

    Article  CAS  Google Scholar 

  34. V. Guttmann, J.L. Gonzalez-Carrasco, and H. Fattori, Oxidation Behavior of ODS Alloy MA 6000, Oxid. Metals, 1999, 51(1), p 159–180.

    Article  CAS  Google Scholar 

  35. Y. Sun, L. Chen, L. Li, and X. Ren, High-Temperature Oxidation Behavior and Mechanism of Inconel 625 Super-Alloy Fabricated by Selective Laser Melting, Opt. Laser Technol., 2020, 132, p 106509.

    Article  CAS  Google Scholar 

  36. H. Over and A.P. Seitsonen, Surface Chemistry: Oxidation of Metal Surfaces, Science, 2002, 297(5589), p 2003–2005.

    Article  CAS  PubMed  Google Scholar 

  37. L. Li, L. Luo, J. Ciston, W.A. Saidi, E.A. Stach, J.C. Yang, and G. Zhou, Surface-Step-Induced Oscillatory Oxide Growth, Phys. Rev. Lett., 2014, 113(13), p 136104.

    Article  PubMed  Google Scholar 

  38. R. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallogr. Sect. A, 1976, 32(5), p 751–767.

    Article  Google Scholar 

  39. M.P. Brady, Y. Yamamoto, M.L. Santella, and L.R. Walker, Composition, Microstructure, and Water Vapor Effects on Internal/External Oxidation of Alumina-Forming Austenitic Stainless Steels, Oxid. Metals, 2009, 72(5), p 311.

    Article  CAS  Google Scholar 

  40. Y. Yamamoto, M.P. Brady, M.L. Santella, H. Bei, P.J. Maziasz, and B.A. Pint, Overview of Strategies for High-Temperature Creep and Oxidation Resistance of Alumina-Forming Austenitic Stainless Steels, Metall. Mater. Trans. A, 2011, 42(4), p 922–931.

    Article  CAS  Google Scholar 

  41. N. Vermaak, A. Mottura, and T.M. Pollock, Cyclic Oxidation of High Temperature Coatings on New γ′-Strengthened Cobalt-Based Alloys, Corros. Sci., 2013, 75, p 300–308.

    Article  CAS  Google Scholar 

  42. K.M.N. Prasanna, A.S. Khanna, R. Chandra, and W.J. Quadakkers, Effect of θ-Alumina Formation on the Growth Kinetics of Alumina-Forming Superalloys, Oxid. Metals, 1996, 46(5), p 465–480.

    Article  CAS  Google Scholar 

  43. J.A. Haynes, B.A. Pint, W.D. Porter, and I.G. Wright, Comparison of Thermal Expansion and Oxidation Behavior of Various High-Temperature Coating Materials and Superalloys, Mater. High Temp., 2004, 21(2), p 87–94.

    Article  CAS  Google Scholar 

  44. B.A. Pint, The Future of Alumina-Forming Alloys: Challenges and Applications for Power Generation, Mater. Sci. Forum, 2011, 696, p 57–62.

    Article  CAS  Google Scholar 

  45. G.R. Wallwork and A.Z. Hed, Some Limiting Factors in the Use of Alloys at High Temperatures, Oxid. Metals, 1971, 3(2), p 171–184.

    Article  CAS  Google Scholar 

  46. A. Løken, S. Ricote, and S. Wachowski, Thermal and Chemical Expansion in Proton Ceramic Electrolytes and Compatible Electrodes, Crystals, 2018, 8, p 365.

    Article  Google Scholar 

  47. X. Pang, K. Gao, H. Yang, L. Qiao, Y. Wang, and A.A. Volinsky, Interfacial Microstructure of Chromium Oxide Coatings, Adv. Eng. Mater., 2007, 9(7), p 594–599.

    Article  CAS  Google Scholar 

  48. C.J. Engberg and E.H. Zehms, Thermal Expansion of Al2O3, BeO, MgO, B4C, SiC, and TiC Above 1000°C, J. Am. Ceram. Soc., 1959, 42(6), p 300–305.

    Article  Google Scholar 

  49. G. Bayer, Thermal Expansion of Oxide Compounds with Spinel Structure, Thermochim. Acta, 1972, 3(6), p 421–426.

    Article  CAS  Google Scholar 

  50. A. Petric and H. Ling, Electrical Conductivity and Thermal Expansion of Spinels at Elevated Temperatures, J. Am. Ceram. Soc., 2007, 90, p 1515–1520.

    Article  CAS  Google Scholar 

  51. C. Zhu, A. Javed, P. Li, F. Yang, G.Y. Liang, and P. Xiao, A Study of the Microstructure and Oxidation Behavior of Alumina/Yttria-Stabilized Zirconia (Al2O3/YSZ) Thermal Barrier Coatings, Surf. Coat. Technol., 2012, 212, p 214–222.

    Article  CAS  Google Scholar 

  52. D. Sun, C. Liang, E. Wang, H. Liu, and X. Zhang, The Oxidation of Four Oxide Dispersion Strengthened Ni-5Al-x Si-0.2Y2O3 (x = 1, 3, 5, 7 wt.%) alloys in air at 1100 °C, Corros. Sci., 2018, 133, p 336–348.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude for the financial support provided by the United States Department of Energy [Award Number: DE-FE0031277] and the support received from the Instrumentation Seed Program for Innovative Research (InSPIRe) from West Virginia University Research Corporation (WVURC) and WVU Statler College of Engineering and Mineral Resources. The authors also acknowledge the utilization of West Virginia University Shared Research Facilities (SRF). Special thanks are extended to Dr. Qiang Wang and Dr. Marcela Redigolo at WVU SRF for their valuable assistance with XRD and TEM tests, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyu Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Kang, B.S. Oxidation Behavior of Ni-Based Oxide Dispersion-Strengthened Alloy Fabricated by Direct Energy Deposition at 1100 °C. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09449-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09449-9

Keywords

Navigation