Skip to main content
Log in

Comparative Study of Oxidation Behavior of Cr2O3 Dispersed W-Zr Alloys at 800°C, 1000°C and 1200°C Fabricated Using Powder Metallurgy

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Oxidation behavior at 800°C, 1000°C and 1200°C of nano-Cr2O3 dispersed W-Zr alloys fabricated using mechanical milling followed by conventional sintering at 1500°C in inert atmosphere is discussed. Three different alloys were designated as W-0.5Zr-1Cr2O3 (alloy A), W-0.5Zr-2Cr2O3 (alloy B), and W-1Zr-1Cr2O3 (alloy C) (in wt.%). The application range of W is greatly restricted by oxidation, necessitating the use of suitable alloying and dispersion techniques. Upon exposure to 800°C, alloy A exhibited the highest level of oxidation resistance, whereas alloy B demonstrated superior performance at 1000°C and 1200°C. This enhanced oxidation resistance in alloy B can be attributed to its microstructure, characterized by a fine and uniform distributed Cr2O3-rich and Zr-rich phase. At 800°C, protection against oxidation primarily resulted from improved densification, enhanced adhesion of oxide scale with the matrix phase, and decreased volatilization of WO3. However, at ≥ 1000°C, the development of Cr2WO6 seems to play a vital role. Higher activation energy was also observed in the current alloys compared to pure W, attributed to the combined influence of Cr2O3 and Zr dispersion. This study offers valuable insights into the development of oxidation-resistant alloys through Cr2O3 dispersion, particularly applicable for high-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E. Lassner and W.D. Schubert, Tungsten Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds (Kluwer Academic, New York, 1999).

    Book  Google Scholar 

  2. Q. Wei, H.T. Zhang, B.E. Schuster, K.T. Ramesh, R.Z. Valiev, L.J. Kecskes, R.J. Dowding, L. Mag-ness, and K. Cho, Acta Mater. 54, 4079 (2006).

    Article  Google Scholar 

  3. A. Patra, Oxide Dispersion Strengthened Refractory Alloys, 1st edn. (CRC Press, Boca Raton, 2022).

    Book  Google Scholar 

  4. J.R. Davis, ASM Specialty Handbook: Heat-Resistant Materials (ASM International, Cleveland, 1999).

    Google Scholar 

  5. F. Klein, T. Wegener, A. Litnovsky, M. Rasinski, X.Y. Tan, J. Gonzalez-Julian, J. Schmitz, M. Bram, J.W. Coenen, and C. Linsmeier, Nucl. Mater. Energy 15, 226 (2018).

    Article  Google Scholar 

  6. A. Litnovsky, T. Wegener, F. Klein, C. Linsmeier, M. Rasinski, A. Kreter, X. Tan, J. Schmitz, Y. Mao, J.W. Coenen, M. Bram, and J. Gonzalez-Julian, Plasma Phys. Control. Fusion 59, 064003 (2017).

    Article  Google Scholar 

  7. A. Hedayat, H. Davilu, and J. Jafari, Loss of coolant accident analyses on tehran research reactor by RELAP5/MOD3.2 code. Prog. Nucl. Energy 49, 511–528 (2007).

    Article  Google Scholar 

  8. T. Wegener, F. Klein, A. Litnovsky, M. Rasinski, J. Brinkmann, F. Koch, and C. Linsmeier, Nucl. Mater. Energy 9, 394 (2016).

    Article  Google Scholar 

  9. A. Calvo, K. Schlueter, E. Tejado, G. Pintsuk, N. Ordás, I. Iturriza, R. Neu, J.Y. Pastor, and C. García-Rosales, Int. J. Refract. Met. Hard Mater. 73, 29 (2018).

    Article  Google Scholar 

  10. J. Das, G. Appa Rao, S.K. Pabi, M. Sankaranarayana, and T.K. Nandy, Int. J. Refract. Met. Hard Mater. 47, 25 (2014).

    Article  Google Scholar 

  11. X.Y. Tan, F. Klein, A. Litnovsky, T. Wegener, J. Schmitz, C. Linsmeier, J.W. Coenen, U. Breuer, M. Rasinski, P. Li, L.M. Luo, and Y.C. Wu, Corros. Sci. 147, 201 (2019).

    Article  Google Scholar 

  12. Y. Itoh, and Y. Ishiwata, JSME Int. J. Ser. A Mech. Mater. Eng. 39, 429 (1996).

    Google Scholar 

  13. S. Telu, R. Mitra, and S.K. Pabi, Metall. Mater. Trans. A 46A, 5909 (2015).

    Article  Google Scholar 

  14. A. Patra, M. Meraj, S. Pal, N. Yedla, and S.K. Karak, Int. J. Refract. Met. Hard Mater. 58, 57 (2016).

    Article  Google Scholar 

  15. V.R. Talekar, A. Patra, S.K. Sahoo, S.K. Karak, and B. Mishra, Int. J. Refract. Met. Hard Mater. 82, 183 (2019).

    Article  Google Scholar 

  16. Z.M. Xie, R. Liu, Q.F. Fang, Y. Zhou, X.P. Wang, and C.S. Liu, J. Nucl. Mater. 444(1–3), 175 (2014).

    Article  Google Scholar 

  17. R. Liu, Z.M. Xie, T. Hao, Y. Zhou, X.P. Wang, Q.F. Fang, and C.S. Liu, J. Nucl. Mater. 451(1–3), 35 (2014).

    Article  Google Scholar 

  18. H. Kurishita, T. Kuwabara, M. Hasegawa, S. Kobayashi, and K. Nakai, J. Nucl. Mater. 343(1–3), 318 (2005).

    Article  Google Scholar 

  19. H. Kurishita, Y. Amano, S. Kobayashi, K. Nakai, H. Arakawa, Y. Hiraoka, T. Takida, K. Takebe, and H. Matsui, J. Nucl. Mater. 367–370, 1453 (2007).

    Article  Google Scholar 

  20. I. Wesemann, W. Spielmann, P. Heel, and A. Hoffmann, Int. J. Refract. Met. Hard Mater. 28, 687 (2010).

    Article  Google Scholar 

  21. B. Das and A. Patra, Mater. Today Proceed. 62, 6055 (2022).

    Article  Google Scholar 

  22. M.A. Yar, S. Wahlberg, H. Bergqvist, H.G. Salem, M. Johnsson, and M. Muhammed, J. Nucl. Mater. 412, 227 (2011).

    Article  Google Scholar 

  23. A. Muñoz, M.A. Monge, B. Savoini, M.E. Rabanal, G. Garces, and R. Pareja, J. Nucl. Mater. 417, 508 (2011).

    Article  Google Scholar 

  24. B. Das, A.R. Khan, and A. Patra, Effect of nano-Cr2O3 dispersed W-Zr alloys by mechanical alloying and pressureless conventional sintering. J. Mater. Eng. Perform. https://doi.org/10.1007/s11665-023-08357-8 (2023).

    Article  Google Scholar 

  25. S. Zhang, R. Li, and Y. Xu, Mater. Res. Express 9, 096510 (2022).

    Article  Google Scholar 

  26. Y. Kim, M.H. Hong, S.H. Lee, E.P. Kim, S. Lee, and J.W. Noh, Met. Mater. Int. 12(3), 245–248 (2006).

    Article  Google Scholar 

  27. S. Samal, High-temperature oxidation of metals, in High Temperature Corrosion, ed. by Z. Ahmad (IntechOpen, 2016), vol. 12, pp. 11–17. https://doi.org/10.5772/63000.

  28. N. Cabrera and N.F. Mott, Theory of the oxidation of metal. Rep. Prog. Phys. 12, 163–184 (1949).

    Article  Google Scholar 

  29. C. Wagner, J. Electrochem. Soc. 99, 369 (1952).

    Article  Google Scholar 

  30. G.C. Wood, Oxid. Met. 2(1), 11 (1970).

    Article  Google Scholar 

  31. D. Yong, High Temperature Oxidation and Corrosion of Metals, first edition, Elsevier Science, 2008 6th August 2008. ISBN: 9780080559414.

  32. G. Tammann and Z. Anorg, Allg. Chem. 111, 78–89 (1920).

    Article  Google Scholar 

  33. A.T. Fromhold, Theory of Metal Oxidation, North Holland Publishing Company, Amsterdam, 1976 Signatur an der Bibliothek der Uni Graz:I 466591.

  34. F. Koch, S. Koppl, and H. Bolt, J. Nucl. Mater. 386–388, 572 (2009).

    Article  Google Scholar 

  35. P. López-Ruiz, N. Ordás, S. Lindig, F. Koch, I. Iturriza, and C. García-Rosales, Phys. Scr. T145, 014018 (2011).

    Article  Google Scholar 

  36. N.B. Pilling and R.E. Bedworth, J. Inst. Met. 29, 529 (1923).

    Google Scholar 

  37. R.F. Speyer. Thermal Analysis of Materials (1st ed.). CRC Press. https://doi.org/10.1201/9781482277425

  38. M.A. Meyers, A. Mishra, and D.J. Benson, Prog. Mater. Sci. 51, 427 (2006).

    Article  Google Scholar 

  39. W.W. Webb, J.T. Norton, and C. Wagner, J. Electrochem. Soc. 103, 107 (1956).

    Article  Google Scholar 

  40. J.B. Berkowitz-Mattuck, A. Buchler, J.L. Engelke, and S.N. Goldstein, J. Chem. Phys. 39, 2722 (1963).

    Article  Google Scholar 

  41. E.A. Gulbransen, Corrosion 26, 19 (1970).

    Article  Google Scholar 

  42. Y.A. Yang, Y. Ma, J.N. Yao, and B.H. Loo, J. Non-Cryst. Solids 272, 71 (2000).

    Article  Google Scholar 

  43. O. Kubaschewski and B.E. Hopkins, J. Less-Common Met. 2, 172 (1960).

    Article  Google Scholar 

  44. M.A. Monge, P. Adeva, A. Muñoz, and P. Pérez, Fusion Eng. Des. 146, 783 (2019).

    Article  Google Scholar 

  45. V. Suman and D. Chaira, J. Mater. Eng. Perform. https://doi.org/10.1007/s11665-023-08366-7 (2023).

    Article  Google Scholar 

  46. F. Koch and H. Bolt, Phys. Scr. T128, 100 https://doi.org/10.1088/0031-8949/2007/T128/020 (2007).

    Article  Google Scholar 

  47. S. Samal, High Temp. Corros. https://doi.org/10.5772/63000 (2016).

    Article  Google Scholar 

  48. F.S.P. Neil Birks, and G.H. Meier, High Temperature Oxidation of metals, 2nd edn. (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  49. V.D. Barth, and G.W.P. Rengstorff, Oxidation of Tungsten, United States (1961).

  50. P. Berthod, Oxid. Met. 64, 235 (2005).

    Article  Google Scholar 

  51. D.J. Young, High Temperature Oxidation and Corrosion of Metals, 2nd edn. (Elsevier, New York, 2016).

    Google Scholar 

  52. M.S. Ansari, V. Chawla, A. Bansal, et al., J. Mater. Eng. Perform. 31, 753 (2022).

    Article  Google Scholar 

  53. S. Telu, R. Mitra, and S.K. Pabi, Int. J. Refract. Met. Hard Mater. 38, 47 (2013).

    Article  Google Scholar 

  54. T.A. Ramanarayanan, R. Ayer, R. Petkovic-Luton, and D.P. Leta, Oxid. Met. 29, 445 (1988).

    Article  Google Scholar 

  55. K.T. Faber and A.G. Evans, Acta Metall. 31, 565 (1983).

    Article  Google Scholar 

  56. D. Ghosh, S. Mukherjee, and S. Das, Surf. Eng. 30, 524 (2014).

    Article  Google Scholar 

  57. H.E. Evans, Int. Mater. Rev. 40, 1 (1995).

    Article  Google Scholar 

  58. S. Telu, A. Patra, M. Sankaranarayana, R. Mitra, and S.K. Pabi, Int. J. Refract. Met. Hard Mater. 36, 191 (2013).

    Article  Google Scholar 

  59. G. Bayer, J. Am. Ceram. Soc. 43, 495 (1960).

    Article  Google Scholar 

  60. T. Ekström and R.J.D. Tilley, Mater. Res. Bull. 10, 1175 (1975).

    Article  Google Scholar 

  61. C.F. Gardinier and L.L.Y. Chang, J. Am. Ceram. Soc. 61, 376 (1978).

    Article  Google Scholar 

  62. K.T. Jacob, J. Mater. Sci. 15, 2167 (1980).

    Article  Google Scholar 

  63. C. Cantalini, J. Eur. Ceram. Soc. 24, 1421 (2004).

    Article  Google Scholar 

  64. W. Kunnmann, S. La Placa, L.M. Corliss, J.M. Hastings, and E. Banks, J. Phys. Chem. Solids 29, 1359 (1968).

    Article  Google Scholar 

  65. W. Liu, C. Ye, L. Xue, W. Zhang, and Y. Yan, Int. J. Refract. Met. Hard Mater. 100, 105631 (2021).

    Article  Google Scholar 

  66. Z.S. Levin and K.T. Hartwig, Mater. Sci. Eng. A 635, 94 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support provided by TEQIP II NIT Rourkela, along with the assistance from FIST-DST for conducting the XRD study.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Credit author statement: BD: Methodology, Investigation, Formal analysis, Writing, Software, Data Curation, Visualization, Writing- Original draft preparation: VS: Reviewing and Editing: AP: Conceptualization, Methodology, Reviewing and Editing, Supervision.

Corresponding author

Correspondence to Bappa Das.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 521 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, B., Suman, V. & Patra, A. Comparative Study of Oxidation Behavior of Cr2O3 Dispersed W-Zr Alloys at 800°C, 1000°C and 1200°C Fabricated Using Powder Metallurgy. JOM (2024). https://doi.org/10.1007/s11837-024-06515-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06515-4

Navigation