Skip to main content
Log in

Effect of Carbon Content on Wear Behavior of Ni-Co-Cr-Mo-Cu Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, ball-on-disk dry sliding wear behavior of Ni-Co-Cr-Mo-Cu alloys with carbon contents of 0.2, 1, 1.5, 2 wt.% with Al2O3 ball as a counterpart was investigated systematically. Alloys containing 0.2 and 1 wt.% carbon exhibit dispersed carbides, serving as matrix strengthener, while higher alloying of carbon (1.5, 2 wt.%) will induce the aggregation of carbides, acting as load bearer. Therefore, with increasing carbon content, the propensity of plastic deformation and oxidative lubrication is reduced, the roughness of worn surface is decreasing, and the wear mechanism is also altered from adhesive wear to fatigue wear. Significant reduction of wear rate by alloying high carbon content demonstrated the feasibility of carbides-reinforced Ni-Co-Cr-Mo-Cu alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y. Hou, Y. Li, C. Zhang, Y. Koizumi, and A. Chiba, Effects of Cold Working on Corrosion Resistance of Co-Modified Ni-16Cr-15Mo alloy in Hydrofluoric Acid Solution, Corros. Sci., 2014, 89, p 258–267. https://doi.org/10.1016/j.corsci.2014.09.004

    Article  CAS  Google Scholar 

  2. Y. Li, X. Fan, N. Tang, H. Bian, Y. Hou, Y. Koizumi, and A. Chiba, Effects of Partially Substituting Cobalt for Nickel on the Corrosion Resistance of a Ni-16Cr-15Mo Alloy to Aqueous Hydrofluoric Acid, Corros. Sci., 2014, 78, p 101–110. https://doi.org/10.1016/j.corsci.2013.09.004

    Article  CAS  Google Scholar 

  3. C. Zhang, Y. Li, Y. Hou, N. Tang, K. Ohmura, Y. Koizumi, and A. Chiba, Corrosion Resistance of Cu- and Fe-Modified Ni-30Co-16Cr-15Mo Alloy in Aqueous Hydrofluoric Acid, Corros. Sci., 2014, 89, p 81–92. https://doi.org/10.1016/j.corsci.2014.08.010

    Article  CAS  Google Scholar 

  4. A. Frenk and W. Kurz, Microstructural Effects on the Sliding Wear Resistance of a Cobalt-Based Alloy, Wear, 1994, 174, p 81–91. https://doi.org/10.1016/0043-1648(94)90089-2

    Article  CAS  Google Scholar 

  5. H. Berns, Microstructural Properties of Wear-Resistant Alloys, Wear, 1995, 181–183, p 271–279. https://doi.org/10.1016/0043-1648(95)90034-9

    Article  Google Scholar 

  6. B. Yang, C. Shi, J. Teng, Q. Lei, Y. Nie, and Y. Li, Influence of Co Addition on the Deformation Behavior and Mechanical Properties of Ni-16Cr-11Mo-2Cu Alloy, Mater. Sci. Eng. A, 2019, 767, p 138442. https://doi.org/10.1016/j.msea.2019.138442

    Article  CAS  Google Scholar 

  7. Y. Li, X. Xu, Y. Hou, C. Zhang, F. Wang, K. Omura, Y. Koizumi, and A. Chiba, Regulating the Passive Film of NiCoCrMo Alloy in Hydrofluoric Acid Solution by Small Addition of Cu, Corros. Sci., 2015, 98, p 119–127. https://doi.org/10.1016/j.corsci.2015.05.024

    Article  CAS  Google Scholar 

  8. B. Yang, J. Li, X. Gong, Y. Nie, and Y. Li, Effects of Cu Addition on the Corrosion Behavior of NiCoCrMo Alloys in Neutral Chloride Solution, RSC Adv., 2017, 7, p 40779–40790. https://doi.org/10.1039/C7RA05617F

    Article  CAS  Google Scholar 

  9. B. Yang, C. Shi, J. Teng, X. Gong, X. Ye, Y. Li, Q. Lei, and Y. Nie, Corrosion Behaviours of Low Mo Ni-(Co)-Cr-Mo Alloys With Various Contents of Co in HF Acid Solution, J. Alloys Compd., 2019, 791, p 215–224. https://doi.org/10.1016/j.jallcom.2019.03.325

    Article  CAS  Google Scholar 

  10. B. Yang, Y. Hou, Q. Lei, Y. Li, and A. Chiba, Influence of Cu Addition on Corrosion Behavior and Tensile Performance of Ni-30Co-16Cr-15Mo-6Fe Alloy, Mater. Charact., 2020, 161, p 110140. https://doi.org/10.1016/j.matchar.2020.110140

    Article  CAS  Google Scholar 

  11. B. Yang, Y. Hou, Y. Li, and A. Chiba, Roles of Mo and Cu on Electrochemical Behaviors of Ni-Base Alloys in Hydrofluoric Acid Solution, J. Electrochem. Soc., 2020, 167, p 101502. https://doi.org/10.1149/1945-7111/ab98ab

    Article  CAS  Google Scholar 

  12. B. Yang, C. Shi, Y. Li, Q. Lei, and Y. Nie, Effect of Cu on the Corrosion Resistance and Electrochemical Response of a Ni-Co-Cr-Mo Alloy in Acidic Chloride Solution, J. Mater. Res., 2018, 33, p 3801–3808. https://doi.org/10.1557/jmr.2018.271

    Article  CAS  Google Scholar 

  13. Y.P. Ji, S.J. Wu, L.J. Xu, Y. Li, and S.Z. Wei, Effect of Carbon Contents on Dry Sliding Wear Behavior of High Vanadium High Speed Steel, Wear, 2012, 294–295, p 239–245. https://doi.org/10.1016/j.wear.2012.07.003

    Article  CAS  Google Scholar 

  14. A.P. Sannino and H.J. Rack, Dry Sliding Wear of Discontinuously Reinforced Aluminum Composites: Review and Discussion, Wear, 1995, 189, p 1–19. https://doi.org/10.1016/0043-1648(95)06657-8

    Article  CAS  Google Scholar 

  15. C. Raahgini and D. Verdi, Abrasive Wear Performance of Laser Cladded Inconel 625 Based Metal Matrix Composites: Effect of the Vanadium Carbide Reinforcement Phase Content, Surf. Coat. Technol., 2022, 429, p 127975. https://doi.org/10.1016/j.surfcoat.2021.127975

    Article  CAS  Google Scholar 

  16. J.M. Wilson and Y.C. Shin, Microstructure and Wear Properties of Laser-Deposited Functionally Graded Inconel 690 Reinforced with TiC, Surf. Coat. Technol., 2012, 207, p 517–522. https://doi.org/10.1016/j.surfcoat.2012.07.058

    Article  CAS  Google Scholar 

  17. Q. Li, G.M. Song, Y.Z. Zhang, T.C. Lei, and W.Z. Chen, Microstructure and Dry Sliding Wear Behavior of Laser Clad Ni-Based Alloy Coating with the Addition of SiC, Wear, 2003, 254, p 222–229. https://doi.org/10.1016/S0043-1648(03)00007-3

    Article  CAS  Google Scholar 

  18. J. Nurminen, J. Näkki, and P. Vuoristo, Microstructure and Properties of Hard and Wear Resistant MMC Coatings Deposited by Laser Cladding, Int. J. Refract. Metal. Hard Mater., 2009, 27, p 472–478. https://doi.org/10.1016/j.ijrmhm.2008.10.008

    Article  CAS  Google Scholar 

  19. C.P. Paul, S.K. Mishra, P. Tiwari, and L.M. Kukreja, Solid-Particle Erosion Behaviour of WC/Ni Composite Clad layers with Different Contents of WC Particles, Opt. Laser Technol., 2013, 50, p 155–162. https://doi.org/10.1016/j.optlastec.2013.03.002

    Article  CAS  Google Scholar 

  20. Z. Guo, J. Xiong, M. Yang, X. Song, and C. Jiang, Effect of Mo2C on the Microstructure and Properties of WC-TiC-Ni Cemented Carbide, Int. J. Refract. Metal. Hard Mater., 2008, 26, p 601–605. https://doi.org/10.1016/j.ijrmhm.2008.01.007

    Article  CAS  Google Scholar 

  21. K. Van Acker, D. Vanhoyweghen, R. Persoons, and J. Vangrunderbeek, Influence of Tungsten Carbide Particle Size and Distribution on the Wear Resistance of Laser Clad WC/Ni Coatings, Wear, 2005, 258, p 194–202. https://doi.org/10.1016/j.wear.2004.09.041

    Article  CAS  Google Scholar 

  22. B.K. Anil Kumar, M.G. Ananthaprasad, and K. GopalaKrishna, A Review on Mechanical and Tribological Behaviors of Nickel Matrix Composites, Indian J. Sci. Technol., 2016, 9, p 15. https://doi.org/10.17485/ijst/2016/v9i2/82868

    Article  CAS  Google Scholar 

  23. A. Sergi, R.H.U. Khan, S. Irukuvarghula, M. Meisnar, A. Makaya, and M.M. Attallah, Development of Ni-Base Metal Matrix Composites by Powder Metallurgy Hot Isostatic Pressing for Space Applications, Adv. Powder Technol., 2022, 33, p 103411. https://doi.org/10.1016/j.apt.2021.103411

    Article  CAS  Google Scholar 

  24. A.G. Lekatou, A.K. Sfikas, D. Sioulas, and A. Kanderakis, Sliding Wear Performance of Al-Co Alloys Fabricated by Vacuum arc Melting and Correlation with Their Microstructure, Mater. Chem. Phys., 2022, 276, p 125411. https://doi.org/10.1016/j.matchemphys.2021.125411

    Article  CAS  Google Scholar 

  25. A.P. Sannino and H.J. Rack, Tribological Investigation of 2009 Al-20 vol.% SiCp/17-4 PH Part I: Composite Performance, Wear, 1996, 197, p 151–159. https://doi.org/10.1016/0043-1648(95)06908-9

    Article  CAS  Google Scholar 

  26. Z. Cheng, L. Yang, Z. Huang, T. Wan, M. Zhu, and F. Ren, Achieving Low Wear in a μ-Phase Reinforced High-Entropy Alloy and Associated Subsurface Microstructure Evolution, Wear, 2021, 474–475, p 203755. https://doi.org/10.1016/j.wear.2021.203755

    Article  CAS  Google Scholar 

  27. Y. Chen, Y. Li, S. Kurosu, K. Yamanaka, N. Tang, and A. Chiba, Effects of Microstructures on the Sliding Behavior of Hot-Pressed CoCrMo Alloys, Wear, 2014, 319, p 200–210. https://doi.org/10.1016/j.wear.2014.07.022

    Article  CAS  Google Scholar 

  28. A. Takeuchi and A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Mater. Trans., 2005, 46, p 2817–2829. https://doi.org/10.2320/matertrans.46.2817

    Article  CAS  Google Scholar 

  29. Y. Wang, T. Lei, and J. Liu, Tribo-Metallographic Behavior of High Carbon Steels In Dry Sliding: I. Wear Mechanisms and Their Transition, Wear, 1999, 231, p 1–11. https://doi.org/10.1016/S0043-1648(99)00115-5

    Article  CAS  Google Scholar 

  30. T.F.J. Quinn, Review of Oxidational Wear: Part I: The Origins of Oxidational Wear, Tribol. Int., 1983, 16, p 257–271. https://doi.org/10.1016/0301-679X(83)90086-5

    Article  CAS  Google Scholar 

  31. T.F.J. Quinn, Review of Oxidational Wear Part II: Recent Developments and Future Trends in Oxidational Wear Research, Tribol. Int., 1983, 16, p 305–315. https://doi.org/10.1016/0301-679X(83)90039-7

    Article  CAS  Google Scholar 

  32. H.B. Tang, Y.L. Fang, and H.M. Wang, Microstructure and Dry Sliding Wear Resistance of a Cr13Ni5Si2 Ternary Metal Silicide Alloy, Acta Mater., 2004, 52, p 1773–1783. https://doi.org/10.1016/j.actamat.2003.12.018

    Article  CAS  Google Scholar 

  33. M.R. Fernández, A. García, J.M. Cuetos, R. González, A. Noriega, and M. Cadenas, Effect of Actual WC Content on the Reciprocating Wear of a Laser Cladding NiCrBSi Alloy Reinforced with WC, Wear, 2015, 324–325, p 80–89. https://doi.org/10.1016/j.wear.2014.12.021

    Article  CAS  Google Scholar 

  34. L. Gu, J. Huang, and C. Xie, Effects of Carbon Content on Microstructure and Properties of WC-20Co Cemented Carbides, Int. J. Refract. Metal. Hard Mater., 2014, 42, p 228–232. https://doi.org/10.1016/j.ijrmhm.2013.09.010

    Article  CAS  Google Scholar 

  35. Y.B. Peng, W. Zhang, T.C. Li, M.Y. Zhang, L. Wang, Y. Song, S.H. Hu, and Y. Hu, Microstructures and Mechanical Properties of FeCoCrNi High Entropy alloy/WC Reinforcing Particles Composite Coatings Prepared by Laser Cladding and Plasma Cladding, Int. J. Refract. Metal. Hard Mater., 2019, 84, p 105044. https://doi.org/10.1016/j.ijrmhm.2019.105044

    Article  CAS  Google Scholar 

  36. N.M. Melendez, V.V. Narulkar, G.A. Fisher, and A.G. McDonald, Effect of Reinforcing Particles on the Wear Rate of Low-Pressure Cold-Sprayed WC-Based MMC Coatings, Wear, 2013, 306, p 185–195. https://doi.org/10.1016/j.wear.2013.08.006

    Article  CAS  Google Scholar 

  37. R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, and T.M. Pollock, Strengthening Mechanisms in Polycrystalline Multimodal Nickel-Base Superalloys, Metall. Mater. Trans A, 2009, 40, p 1588–1603. https://doi.org/10.1007/s11661-009-9858-5

    Article  CAS  Google Scholar 

  38. P. Figiel, S. Zimowski, P. Klimczyk, T. Dziwisz, and L. Jaworska, Mechanical and Tribological Properties of TiC-Based Composites for ED Machining, Arch. Mater. Sci. Eng., 2008, 33, p 6.

    Google Scholar 

  39. Z. Wang, T. Lin, X. He, H. Shao, B. Tang, and X. Qu, Fabrication and Properties of the TiC Reinforced High-Strength Steel Matrix Composite, Int. J. Refract. Metal. Hard Mater., 2016, 58, p 14–21. https://doi.org/10.1016/j.ijrmhm.2016.03.013

    Article  CAS  Google Scholar 

  40. M. Wu, K. Chen, Z. Xu, and D.Y. Li, Effect of Ti Addition on the Sliding Wear Behavior of AlCrFeCoNi High-Entropy Alloy, Wear, 2020, 462–463, p 203493. https://doi.org/10.1016/j.wear.2020.203493

    Article  CAS  Google Scholar 

  41. E. Rabinowicz, Friction and Wear of Self-Lubricating Metallic Materials, J. Lubr. Technol., 1975, 97, p 217–220. https://doi.org/10.1115/1.3452560

    Article  CAS  Google Scholar 

  42. S. Stewart, R. Ahmed, and T. Itsukaichi, Contact Fatigue Failure Evaluation of Post-Treated WC-NiCrBSi Functionally Graded Thermal Spray Coatings, Wear, 2004, 257, p 962–983. https://doi.org/10.1016/j.wear.2004.05.008

    Article  CAS  Google Scholar 

  43. C. Li, J. Teng, B. Yang, X. Ye, J. Liu, and Y. Li, Correlation Between Microstructure and Mechanical Properties of Novel Co-Ni-Based Powder Metallurgy Superalloy, Mater. Charact., 2021, 181, p 111480. https://doi.org/10.1016/j.matchar.2021.111480

    Article  CAS  Google Scholar 

  44. T. Osada, Y. Gu, N. Nagashima, Y. Yuan, T. Yokokawa, and H. Harada, Optimum Microstructure Combination for Maximizing Tensile Strength in a Polycrystalline Superalloy with a Two-Phase Structure, Acta Mater., 2013, 61, p 1820–1829. https://doi.org/10.1016/j.actamat.2012.12.004

    Article  CAS  Google Scholar 

  45. T.J. Rupert, and C.A. Schuh, Sliding Wear of Nanocrystalline Ni-W: Structural Evolution and the Apparent Breakdown of Archard Scaling, Acta Mater., 2010, 58, p 4137–4148. https://doi.org/10.1016/j.actamat.2010.04.005

    Article  CAS  Google Scholar 

  46. H. So, The Mechanism of Oxidational Wear, Wear, 1995, 184, p 161–167. https://doi.org/10.1016/0043-1648(94)06569-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunping Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Fig. 

Fig. 15
figure 15

Typical EDS results of 2C alloy

15 and

Fig. 16
figure 16

Typical EDS results of 0.2C and 1C alloy under different loads: (a, d) 10N, (b, e) 30N and (c, f) 50N

16.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Teng, J., Yang, B. et al. Effect of Carbon Content on Wear Behavior of Ni-Co-Cr-Mo-Cu Alloy. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08305-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08305-6

Keywords

Navigation