Skip to main content
Log in

Effects of Nb and Mo on 1200 °C Steam Oxidation and Mechanical Properties of FeCrAl Alloys for Fuel Cladding Materials

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Iron–chromium–aluminium (FeCrAl) alloy compositions should be optimised to improve performance. The effects of Nb and Mo on the high-temperature steam oxidation of FeCrAl alloys were investigated at 1200 °C. The oxide film of a series of alloys with different Nb contents mainly comprised Al2O3 and the surface morphology was wrinkled. For the series alloys with different Mo contents, when Mo was greater than 2 wt.%, the oxide film component also contained MoO3, in addition to Al2O3, with the presence of micropores. The oxidation weight gain decreased with Nb, owing to a great many Laves phases, which impeded the outward diffusion of Al. The oxidation weight gain increased with Mo, and this was attributed to the volatilisation of MoO3, which promoted the diffusion of oxygen. The yield strength of FeCrAl alloys increased with increased Nb and Mo and decreased with oxidation time. Nb and Mo promoted the precipitation of the Laves phases and increased the hindrance to grain boundaries, which favoured fine grain strengthening. This was critical to obtaining FeCrAl fuel cladding alloys with great steam oxidation resistance and mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P. Hofmann, Current Knowledge on Core Degradation Phenomena, A Review, J. Nucl. Mater., 1999, 270, p 194–211.

    Article  CAS  Google Scholar 

  2. X.F. Lv, D.G. Lu, and B. Liu, Mechanism of Zirconium-Water Reaction for Pressurized Water Reactor, At. Energy Sci. Technol., 2010, 3, p 299–303.

    Google Scholar 

  3. M.N. Cinbiz, N. Brown, K.A. Terrani, R.R. Lowden, and Donald Erdman III, The Mechanical Response Evaluation of Advanced Claddings During Proposed Reactivity Initiated Accident Conditions, Energy Mater., 2017, pp. 355–365

  4. X. Wu, T. Kozlowski, and J.D. Hales, Neutronics and Fuel Performance Evaluation of Accident Tolerant FeCrAl Cladding Under Normal Operation Conditions, Ann. Nucl. Energy., 2015, 85, p 763–775.

    Article  CAS  Google Scholar 

  5. D.J. Park, H.G. Kim, and J.Y. Park, A Study of the Oxidation of FeCrAl Alloy in Pressurized Water and High-Temperature Steam Environment, Corros. Sci., 2015, 94, p 459–465.

    Article  CAS  Google Scholar 

  6. J. Wang and R. Dailey, Accident Tolerant Fuels (FeCrAl Cladding & Coating) Performance Analysis in Boiling Water Reactor (BWR) by the MELCOR 186 UDGC, Nucl. Eng. Des., 2021, 371, p 110974.

    Article  CAS  Google Scholar 

  7. Y.Y. Zhang, H.Y. Sun, and H. Wang, Effects of Cr Element on the Crystal Structure, Microstructure, and Mechanical Properties of FeCrAl Alloys, Mater. Sci. Eng. A, 2021, 826, p 142003.

    Article  CAS  Google Scholar 

  8. R.B. Rebak, K.A. Terrani, W.P. Gassmann, and J.B. Williams, Improving Nuclear Power Plant Safety with FeCrAl Alloy Fuel Cladding, MRS Adv., 2017, 21–22, p 1217–1224.

    Article  Google Scholar 

  9. J.K. Bunn, R.L. Fang, M.R. Albing, A. Mehta, and M.J. Kramer, A High-Throughput Investigation of Fe-Cr-Al as a Novel High-Temperature Coating for Nuclear Cladding Materials, Nanotechnol., 2015, 26, p 274003.

    Article  Google Scholar 

  10. K.O. Gunduz and A. Visibile, The Effect of Additive Manufacturing on the Initial High Temperature Oxidation Properties of RE-Containing FeCrAl alloys, Corros. Sci., 2021, 188, p 109553.

    Article  CAS  Google Scholar 

  11. W.J. Ding, H. Shi, and A. Jianu, Molten Chloride Salts for next Generation Concentrated Solar Power Plants: Mitigation Strategies Against Corrosion of Structural Materials, Sol. Energy Mater. Sol. Cells, 2019, 193, p 298–313.

    Article  CAS  Google Scholar 

  12. K.G. Field, M.N. Gussev, and Y. Yamamoto, Deformation Behaviour of Laser Welds in High Temperature Oxidation Resistant Fe-Cr-Al Alloys for Fuel Cladding Applications, J. Nucl. Mater., 2014, 454, p 352–358.

    Article  CAS  Google Scholar 

  13. G. Berthomé, E. N’Dah, Y. Wouters, and A. Galerie, Temperature Dependence of Metastable Alumina Formation During Thermal Oxidation of FeCrAl Foils, Mater. Corros., 2005, 56, p 389–392.

    Article  Google Scholar 

  14. C. Badini and F. Laurella, Oxidation of FeCrAl Alloy: Influence of Temperature and Atmosphere on Scale Growth Rate and Mechanism, Surf. Coat. Technol., 2001, 135, p 291–298.

    Article  CAS  Google Scholar 

  15. J. Engkvist, U. Bexell, M. Grehk, and M. Olsson, High Temperature Oxidation of FeCrAl-alloys—Influence of Al-Concentration on Oxide Layer Characteristics, Mater. Corros., 2009, 60, p 876–881.

    Article  CAS  Google Scholar 

  16. J.G. Chęcmanowski and B. Szczygieł, Effect of a ZrO2 Coating Deposited by the Sol–Gel Method on the Resistance of FeCrAl Alloy in High-Temperature Oxidation Conditions, Mater. Chem. Phys., 2013, 139, p 944–952.

    Article  Google Scholar 

  17. D. Pan, R.Q. Zhang, H.J. Wang, Y. Xu, and H. Wang, In Steam Short-Time Oxidation Kinetics of FeCrAl Alloys, J. Mater. Eng. Perform., 2018, 27, p 6407–6414.

    Article  CAS  Google Scholar 

  18. D. Pan, R.Q. Zhang, H. Wang, C. Lu, and Y.M. Liu, Formation and Stability of Oxide Layer in FeCrAl Fuel Cladding Material Under High-Temperature Steam, J. Alloys Compd., 2016, 684, p 549–555.

    Article  CAS  Google Scholar 

  19. C.S. Giggins and F.S. Pettit, Oxidation of Ni -Cr -Al Alloys Between 1000 and 1200°C, J. Electrochem. Soc., 1971, 118, p 1782–1789.

    Article  CAS  Google Scholar 

  20. T.H. Huang, D. Naumenko, P. Song, Lu. Jiansheng, and W.J. Quadakkers, Effect of Titanium Addition on Alumina Growth Mechanism on Yttria-Containing FeCrAl-Base Alloy, Oxid. Met., 2018, 90, p 671–690.

    Article  CAS  Google Scholar 

  21. J.P. Wilber, M.J. Bennett, and J.R. Nicholls, Life-Time Extension of Alumina Forming FeCrAl–RE Alloys: Influence of Alloy Thickness, Mater. High Temp., 2000, 17, p 125–132.

    Article  CAS  Google Scholar 

  22. W.H. Zhang, Y. Qian, R.R. Sun, X.D. Lin, and M.Y. Yao, Oxidation Characteristics of Fe22Cr5Al3Mo-xNb Alloys in High Temperature Steam, Corros. Sci., 2021, 191, p 109722.

    Article  CAS  Google Scholar 

  23. J. Eklund, B. Jönsson, A. Persdotter, and J. Liske, The Influence of Silicon on the Corrosion Properties of FeCrAl Model Alloys in Oxidizing Environments at 600 °C, Corros. Sci., 2018, 144, p 266–276.

    Article  CAS  Google Scholar 

  24. R. Liu, H.L. Sun, Q.Q. Guo, M.J. Jiang, and X.S. Jiang, A Study of the Oxidation of Gd-Doped FeCrAl in 1000 °C Steam Environments, J. Mater. Eng. Perform., 2022

  25. D. Singh, P. Sharma, and A. Parashar, Atomistic Simulations to Study Point Defect Dynamics in Bi-Crystalline Niobium, Mater. Chem. Phys., 2020, 255, p 123628.

    Article  CAS  Google Scholar 

  26. Y. Yamamoto, B.A. Pint, and K.A. Terrani, Development and Property Evaluation of Nuclear Grade Wrought FeCrAl Fuel Cladding for Light Water Reactors, J. Nucl. Mater., 2015, 467, p 03–716.

    Article  Google Scholar 

  27. H. Najafi, J. Rassizadehghani, and A. Halvaaee, Mechanical Properties of as Cast Microalloyed Steels Containing V, Nb and Ti, Mater. Sci. Technol., 2007, 23, p 699–705.

    Article  CAS  Google Scholar 

  28. J. Xu, X.Q. Zhao, and S.K. Gong, Effect of Mo on the Oxidation Behaviour of NiTiAl Alloy, Mater. Sci. Forum, 2007, 62, p 1481–1484.

    Article  Google Scholar 

  29. Y.C. Fang, Y.G. Chen, C.L. Wu, X.B. Duan, and S.R. Wang, The Effects of W or Mo on the High-Temperature Properties of Fe-21Cr Alloy Interconnects, J. Funct. Mater., 2010, 41, p 1469–1472.

    CAS  Google Scholar 

  30. J. Shu, H.Y. Bi and X. Li, The Effects of Molybdenum Addition on High Temperature Oxidation Behaviour at 1,000 °C of Type 444 Ferritic Stainless Steel, Oxid. Met., 2012, 78, p 253–267.

    Article  CAS  Google Scholar 

  31. J. Xu, X. Zhao, and S. Gong, Effect of Nb on the High Temperature Oxidation Behaviour of TiNiAl Alloys, Acta Metall. Sin., 2006, 42, p 820–826.

    CAS  Google Scholar 

  32. X.Y. Cheng, X.J. Wan, and J.N. Shen, Effect of Nb on oxidation Behaviour of TiAl at High Temperature, J. Chin. Soc. Corros. Prot., 2002, 22, p 69–71.

    CAS  Google Scholar 

  33. F.A. Golightly, F.H. Stott, and G.C. Wood, The Influence of Yttrium Additions on the Oxide-Scale Adhesion to an Iron-Chromium-Aluminium Alloy, Oxid. Met., 1976, 10, p 163–187.

    Article  CAS  Google Scholar 

  34. V.K. Tolpygo, The Morphology of Thermally Grown α-Al2O3 Scales on Fe-Cr-Al Alloys, Oxid. Met., 1999, 51, p 449–477.

    Article  CAS  Google Scholar 

  35. V.K. Tolpygo and D.R. Clarke, Wrinkling of α-Alumina Films Grown by Thermal Oxidation—I. Quantitative Studies on Single Crystals of Fe–Cr–Al Alloy, Acta Mater., 1998, 46, p 5153–5166.

    Article  CAS  Google Scholar 

  36. T.B. Zhang, H. Ding, and Z.H. Deng, Synergistic Effect of Nb and Mo on Oxidation Behaviour of TiAl Based Alloy at High Temperature, Rare Met. Mater. Eng., 2012, 41, p 33–37.

    Google Scholar 

  37. Z. Yang, J. Pan, and Z.X. Wang, New Insights into the Mechanism of Yttrium Changing High-Temperature Oxide Growth of Fe-13Cr–6Al–2Mo–0.5Nb Alloy for Fuel Cladding, Corros. Sci., 2020, 172, p 108728.

    Article  CAS  Google Scholar 

  38. Z.Q. Sun, P.D. Edmondson, and Y. Yamamoto, Effects of Laves Phase Particles on Recovery and Recrystallization Behaviours of Nb-Containing FeCrAl Alloys, Acta Mater., 2018, 144, p 716–727.

    Article  CAS  Google Scholar 

  39. P. Pérez, M.F. López, and J.A. Jiménez, Oxidation Behaviour of Al-Alloyed ZrSi2 at 700 °C, Intermetallics, 2000, 08, p 1393–1398.

    Article  Google Scholar 

  40. H.S. Seo, D.W. Yun, and K.Y. Kim, Oxidation Behaviour of ferritic Stainless Steel Containing Nb, Nb–Si and Nb–Ti for SOFC Interconnect, Int. J. Hydrogen Energy, 2012, 38, p 2432–2442.

    Article  Google Scholar 

  41. L. Shen, B.J. Wu, K. Zhao, and H.B. Peng, Reason for Negative Effect of Nb Addition on Oxidation Resistance of Alumina-Forming Austenitic Stainless Steel at 1323 K, Corros. Sci., 2021, 191, p 109754.

    Article  CAS  Google Scholar 

  42. Y.X. Xu, J.T. Lu, X.W. Yang, J.B. Yan, and W.Y. Li, Effect and Role of Alloyed Nb on the Air Oxidation Behaviour of Ni-Cr-Fe Alloys at 1000 °C, Corros. Sci., 2017, 127, p 10–20.

    Article  CAS  Google Scholar 

  43. Y.X. Xu, J.T. Lu, W.Y. Li, and X.W. Yang, Oxidation Behaviour of Nb-Rich Ni-Cr-Fe Alloys: Role and Effect of Carbides Precipitates, Corros. Sci., 2018, 140, p 252–259.

    Article  CAS  Google Scholar 

  44. C.L. Wu, L.G. Ma, Y.F. Zhu, X.Q. Guo, Y.L. Wu, Z. Wu, X. Zhang, and L.H. Hou, High-Temperature Reaction Mechanism of Molybdenum Metal in Direct Coal Liquefaction Residue, Catal, 2022, 12(8), p 926–939.

    Article  CAS  Google Scholar 

  45. S.J. Wu, J. Li, C.J. Li, Y.Y. Li, and L.Y. Xiong, Preliminary Study on the Fabrication of 14Cr-ODS FeCrAl Alloy by Powder Forging, J. Mater. Sci. Technol., 2021, 83, p 49–57.

    Article  CAS  Google Scholar 

  46. P. Wang, Z. Gao, and D.F. Cheng, Effect of Ni–P Alloy Coating on Microstructures and Properties of Vacuum Brazed Joints of SiCp/Al Composites, Mod. Phys. Lett. B, 2017, 31, p 1750082.

    Article  CAS  Google Scholar 

  47. O. Yuya and M.-F. Eri, High-Temperature Oxidation Behaviour and Its Oxide Layer Structure Formed on Ti-Nb Alloys, J. Jpn. Inst. Met., 2018, 82, p 232–239.

    Article  Google Scholar 

  48. X.R. Ren, H.J. Li, and Q.G. Fu, TaB2–SiC–Si Multiphase Oxidation Protective Coating for SiC-Coated Carbon/Carbon Composites, J. Eur. Ceram. Soc., 2013, 33, p 2953–2959.

    Article  CAS  Google Scholar 

  49. M.-F. Eri and T. Yoshinobu, Fabrication of TiO2/SiO2 Composite Coating via a High-Temperature Self-Organizing Microporous TiO2 Layer on Ti, J. Jpn. Inst. Met. Mater., 2018, 82, p 2008–2014.

    Google Scholar 

  50. K.A. Terrani, S.J. Zinkle, and L.L. Snead, Advanced Oxidation-Resistant Iron-Based Alloys for LWR Fuel Cladding, J. Nucl. Mater., 2014, 448, p 420–435.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The National Key Research and Development Program of China (No. 2019YFB1901000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cong Li or Xueshan Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33353 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhang, H., Pan, J. et al. Effects of Nb and Mo on 1200 °C Steam Oxidation and Mechanical Properties of FeCrAl Alloys for Fuel Cladding Materials. J. of Materi Eng and Perform 33, 3519–3531 (2024). https://doi.org/10.1007/s11665-023-08232-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08232-6

Keywords

Navigation