Skip to main content
Log in

High-Performance Multifunctional Shape Memory Epoxy with Hybrid Graphene Oxide and Carbon Nanotube Reinforcement

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This work investigates the design and development of multifunctional shape memory polymers (SMP) with significantly improved mechanical and thermal properties and uniquely tunable damping properties. Graphene oxide (GO) and single-walled carbon nanotube (CNT) nanofillers, known for their remarkable mechanical, thermal, and electrical properties, are systematically dispersed into a thermoset SMP using a solvent solution with sonication. SMP specimens of varying nanofiller ratio compositions are studied to determine the individual and combined contributions of GOs and CNTs. Remarkably, the nanofiller ratio determined the tradeoff between improvements in SMP stiffness and toughness. The results showed significant improvements in tensile and mechanical properties resulting from favorable nanofiller network dynamics that impeded crack propagation under quasistatic loading. Micrographs were obtained using a confocal laser scanning microscope (CLM) to investigate the dispersion characteristics. These micrographs in conjunction with fractography results obtained using CLM and scanning electron microscopy (SEM) were used to investigate fracture surfaces under various nanofiller compositions. Further study using dynamic mechanical analysis (DMA) showed improvements in storage modulus and glass transition temperatures, owing to improvements in the resin network brought on by the interactions of carbon-based nanofillers in the SMP matrix. The results reveal important information on the optimum combinations of the nanofillers in the SMP matrix that enable improved mechanical and thermal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. A. Lendlein, H. Jiang, O. Jünger and R. Langer, Light-Induced Shape-Memory Polymers, Nature, 2005, 434, p 879–882. https://doi.org/10.1038/nature03496

    Article  CAS  PubMed  Google Scholar 

  2. US20090093606A1 - Shape memory fibers prepared via wet, reaction, dry, melt, and electro spinning - Google Patents n.d. https://patents.google.com/patent/US20090093606A1/en (accessed July 8, 2022)

  3. H. Tobushi, S. Hayashi, K. Hoshio and N. Miwa, Influence of Strain-Holding Conditions on Shape Recovery and Secondary-Shape Forming Inpolyurethane-Shape Memory Polymer, Smart Mater. Struct., 2006, 15(4), p 1033. https://doi.org/10.1088/0964-1726/15/4/016

    Article  CAS  Google Scholar 

  4. WO2004073690A8 - Self-expanding device for the gastrointestinal or urogenital area - Google Patents n.d. https://patents.google.com/patent/WO2004073690A8/en (accessed July 8, 2022)

  5. WO2006092789A2—Biodegradable self-inflating intragastric implants and method of curbing appetite by the same—Google Patents n.d. https://patents.google.com/patent/WO2006092789A2/en (accessed July 8, 2022)

  6. J. Leng, H. Lu, Y. Liu, W.M. Huang and S. Du, Shape-Memory Polymers—A Class of Novel Smart Materials, MRS Bull., 2009, 34, p 848–855. https://doi.org/10.1557/mrs2009.235

    Article  Google Scholar 

  7. G.J. Monkman, Advances in Shape Memory Polymer Actuation, Mechatronics, 2000, 10(4–5), p 489–498. https://doi.org/10.1016/S0957-4158(99)00068-9

    Article  Google Scholar 

  8. S.H. Jang, D. Kim and Y.L. Park, Accelerated Curing and Enhanced Material Properties of Conductive Polymer Nanocomposites by Joule Heating, Materials, 2018, 11(9), p 1775. https://doi.org/10.3390/ma11091775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. P.C. Ma, N.A. Siddiqui, G. Marom and J.K. Kim, Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review, Compos. A Appl. Sci. Manuf., 2010, 41(10), p 1345–1367. https://doi.org/10.1016/j.compositesa.2010.07.003

    Article  CAS  Google Scholar 

  10. H. Lu, Y. Yao and L. Lin, Carbon-Based Reinforcement in Shape-Memory Polymer Composite for Electrical Actuation, Pigment Resin Tech., 2014, 43(1), p 26–34. https://doi.org/10.1108/prt-08-2013-0075

    Article  CAS  Google Scholar 

  11. X. Ao, D. Kong, Z. Zhang and X. Xiao, Enhancing Recovery Speed and Anti-wear Capability of high-Temperature Shape Memory Polymer with Modified Bornon Nitride Nanoparticles, J. Mater. Sci., 2020, 55, p 4292–4302. https://doi.org/10.1007/s10853-019-04319-5

    Article  CAS  Google Scholar 

  12. F. Li, F. Scarpa, X. Lan, L. Liu, Y. Liu and J. Leng, Bending Shape Recovery of Unidirectional Carbon Fiber Reinforced Epoxy-Based Shape Memory Polymer Composites, Compos. A Appl. Sci. Manuf., 2019, 116, p 169–179. https://doi.org/10.1016/j.compositesa.2018.10.037

    Article  CAS  Google Scholar 

  13. K.K. Patel and R. Purohit, Improved Shape Memory and Mechanical Properties of Microwave Induced Thermoplastic Polyurethane/Graphene Nanoplatelets Composites, Sensors Actuators A Phys., 2019, 285(1), p 17–24. https://doi.org/10.1016/j.sna.2018.10.049

    Article  CAS  Google Scholar 

  14. S. Datta, T.C. Henry, Y.R. Sliozberg, B.D. Lawrence, A. Chattopadhyay and A.J. Hall, Carbon Nanotube Enhanced Shape Memory Epoxy for Improved Mechanical Properties and Electroactive Shape Recovery, Polymer, 2021, 212, p 123158. https://doi.org/10.1016/j.polymer.2020.123158

    Article  CAS  Google Scholar 

  15. H. Zhang, E. Bilotti and T. Peijs, The Use of Carbon Nanotubes for Damage Sensing and Structural Health Monitoring in Laminated Composites: A Review, Nanocomposites, 2015, 1(4), p 167–184. https://doi.org/10.1080/20550324.2015.1113639

    Article  CAS  Google Scholar 

  16. E. Wang et al., Effect of Graphene Oxide-Carbon Nanotube Hybrid Filler on the Mechanical Property and Thermal Response Speed of Shape Memory Epoxy Composites, Compos. Sci. Tech., 2019, 169, p 209–216. https://doi.org/10.1016/j.compscitech.2018.11.022

    Article  CAS  Google Scholar 

  17. M. Dong, H. Zhang, L. Tzounis, G. Santagiuliana, E. Bilotti and D.G. Papageorgiou, Multifunctional Epoxy Nanocomposites Reinforced by Two-Dimensional Materials: A Review, Carbon, 2021, 185, p 57–81. https://doi.org/10.1016/j.carbon.2021.09.009

    Article  CAS  Google Scholar 

  18. A. Bisht, K. Dasgupta and D. Lahiri, Effect of Graphene and CNT Reinforcement on Mechanical and Thermomechanical Behavior of Epoxy—A Comparative Study, J. Appl. Polym. Sci., 2018, 135(14), p 46101. https://doi.org/10.1002/app.46101

    Article  CAS  Google Scholar 

  19. Q.Q. Ni, C.S. Zhang, Y. Fu, G. Dai and T. Kimura, Shape Memory Effect and Mechanical Properties of Carbon Naotube/Shape Memory Polymer Nanocomposites, Compos. Struct., 2007, 81(2), p 176–184. https://doi.org/10.1016/j.compstruct.2006.08.017

    Article  Google Scholar 

  20. Y.H. Liao, O. Marietta-Tondin, Z. Liang, C. Zhang and B. Wang, Investigation of the Dispersion Process of SWNTs/SC-15 Epoxy Resin Nanocomposites, Mater. Sci. Eng. A, 2004, 385(1–2), p 175–181. https://doi.org/10.1016/j.msea.2004.06.031

    Article  CAS  Google Scholar 

  21. T. Xie and I.A. Rousseau, Facile Tailoring of Thermal Transition Temperatures of Epoxy Shape Memory Polymers, Polymer, 2009, 50(8), p 1852–1856. https://doi.org/10.1016/j.polymer.2009.02.035

    Article  CAS  Google Scholar 

  22. C.Y. Dang et al., Improved Interlaminar Shear Strength of Glass Fiber/Epoxy Composites by Graphene Oxide Modified Short Glass Fiber, Mater. Res. Express, 2019, 6, p 085324. https://doi.org/10.1088/2053-1591/ab2254

    Article  CAS  Google Scholar 

  23. C.Y. Dang, X.J. Shen, H.J. Nie, S. Yang, J.X. Shen, X.H. Yang and S.Y. Fu, Enhanced Interlaminar Shear Strength of Ramie fiber/Polypopylene Composites by Optimal Combination of Graphene Oxide Size and Content, Compos. B Eng., 2019, 168, p 488–495. https://doi.org/10.1016/j.compositesb.2019.03.080

    Article  CAS  Google Scholar 

  24. H.J. Nie, Z. Xu, B.L. Tang, C.Y. Dang, Y.R. Yang, X.L. Zeng, B.C. Lin and X.J. Shen, The Effect of Graphene Oxide Modified Short Carbon Fiber on the Interlaminar Shear Strength of Carbon Fiber Fabric/Epoxy Comosites, J. Mater. Sci., 2021, 56, p 488–496. https://doi.org/10.1007/s10853-020-05286-y

    Article  CAS  Google Scholar 

  25. H. Tanabi and M. Erdal, Effect of CNTs Dispersion on Electrical, Mechanical and Strain Sensing Properties of CNT/Epoxy Nanocomposites, Results Phys., 2019, 12, p 486–503. https://doi.org/10.1016/j.rinp.2018.11.081

    Article  Google Scholar 

  26. L. Yue, G. Pircheraghi, S.A. Monemian and I. Manas-Zloczower, Epoxy Composites with Carbon Nanotubes and Graphene Nanoplatelets–Dispersion and Synergy Effects, Carbon, 2014, 78, p 268–278. https://doi.org/10.1016/j.carbon.2014.07.003

    Article  CAS  Google Scholar 

  27. B. Arash, Q. Wang and V.K. Varadan, Mechanical Properties of Carbon Nantube/Polymer Composites, Sci. Rep., 2014, 4, p 6479. https://doi.org/10.1038/srep06479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. F. Gardea, B. Glaz, J. Riddick, D.C. Lagoudas and M. Naraghi, Energy Dissipation due to Interfacial Slip in Nanocomposites Reinforced with Aligned Carbon Nanotubes, ACS Appl. Mater. Interfaces, 2015, 7(18), p 9725–9735. https://doi.org/10.1021/acsami.5b01459

    Article  CAS  PubMed  Google Scholar 

  29. P.H. Wang, S. Sarkar, P. Gulguje, N. Verghese and S. Kumar, Fracture Mechanism of High Impact Strength Polypropylene Containing Carbon Nanotubes, Polymer, 2018, 151, p 287–298. https://doi.org/10.1016/j.polymer.2018.07.031

    Article  CAS  Google Scholar 

  30. A.K.M.M. Alam, M.D.H. Beg and R.M. Yunus, Microstructure and Fractography of Multiwalled Carbon Nanotube Reinforced Unsaturated Polyester Nanocomposites, Polym. Compos., 2016, 38(S1), p E462–E471. https://doi.org/10.1002/pc.23911

    Article  CAS  Google Scholar 

  31. A.C. Tehran, F. Heidari, T.N. Chakherlou and R. Najjar, Fracture Toughness and Fractographic Investigation of Polybutylene Terephthalate/Thermoplastic Polyurethane Binary Blends Reinforced by Multi-walled Carbon Nanotubes Using Essential Work of Fracture Approach, J. Compos. Mater., 2022, 56(5), p 743–759. https://doi.org/10.1177/00219983211061933

    Article  CAS  Google Scholar 

  32. N. Divakaran, X. Zhang, M.B. Kale, T. Senthil, S. Mubarak, D. Dhamodharan, L. Wu and J. Wang, Fabrication of Surface Modified Graphene Oxide/Unsaturated Polyester Nanocomposites via In-Situ Polymerization: Comprehensive Property Enhancement, Appl. Surface Sci., 2020, 502, p 144164. https://doi.org/10.1016/j.apsusc.2019.144164

    Article  CAS  Google Scholar 

  33. D.K. Chouhan, S.K. Rath, A. Kumar, P.S. Alegaonkar, S. Kumar, G. Harikrishnan and T. Umasankar Patro, Structure-Reinforcement Correlation and Chain Dynamics in Graphene Oxide and Laponite-Filled Epoxy Nanocomposites, J. Mater. Sci., 2015, 50, p 7458–7472. https://doi.org/10.1007/S10853-015-9305-5

    Article  CAS  Google Scholar 

  34. S. Chandrasekaran, N. Sato, F. Tolle, R. Mulhaupt, B. Fiedler and K. Schulte, Fracture Toughness and Failure Mechanism of Graphene Based Epoxy Composites, Compos. Sci. Technol., 2014, 97, p 90–99. https://doi.org/10.1016/j.compscitech.2014.03.014

    Article  CAS  Google Scholar 

  35. I.A. Vacchi, C. Spinato, J. Raya, A. Bianco and C. Ménard-Moyon, Chemical Reactivity of Graphene Oxide Towards Amines Elucidated by Solid-State NMR, Nanoscale, 2016, 8, p 13714–13721. https://doi.org/10.1039/c6nr03846h

    Article  CAS  PubMed  Google Scholar 

  36. C. Wan and B. Chen, Reinforcement and Interphase of Polymer/Graphene Oxide Nanocomposites, J. Mater. Chem., 2012, 22(8), p 3637–3646. https://doi.org/10.1039/c2jm15062j

    Article  CAS  Google Scholar 

  37. C. Wan, M. Frydrych and B. Chen, Strong and Bioactive Gelatin-Graphene Oxide Nanocomposites, Soft Matter, 2011, 7(13), p 6159–6166. https://doi.org/10.1039/c1sm05321c

    Article  CAS  Google Scholar 

  38. A. Hale, C.W. Macosko and H.E. Bair, Glass Transition Temperature as a Function of Conversion in Thermosetting Polymers, Macromolecules, 1991, 24(9), p 2610–2621. https://doi.org/10.1021/ma00009a072

    Article  CAS  Google Scholar 

  39. U. Pongsa and A. Somwangthanaroj, Effective Thermal Conductivity of 3,5-Diaminobenzoyl-Functionalized Multiwalled Carbon Nanotubes/Epoxy Composites, J. Appl. Polym. Sci., 2013, 130(5), p 3184–3196. https://doi.org/10.1002/app.39520

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the Office of Naval Research under grant N00014-21-1-2322, Technical Program Manager Dr. William Nickerson and Dr. Anisur Rahman. Any opinions, findings, conclusions, or recommendations expressed in this work are those of the authors and do not necessarily reflect the views of the ONR. The authors also acknowledge the use of facilities within Arizona State University’s Eyring Materials Research Center.

Author information

Authors and Affiliations

Authors

Contributions

JR was involved in conceptualization, methodology, data curation, visualization, investigation, validation, formal analysis, and writing—original draft. XZ was involved in conceptualization, methodology, investigation, validation, and writing—review and editing. CW was involved in conceptualization, methodology, and writing—review and editing. KRV was involved in conceptualization and methodology. LLD and AC were involved in project administration, supervision, funding acquisition, and writing—review and editing.

Corresponding author

Correspondence to Jose Roman.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roman, J., Zhao, X., Whitney, C. et al. High-Performance Multifunctional Shape Memory Epoxy with Hybrid Graphene Oxide and Carbon Nanotube Reinforcement. J. of Materi Eng and Perform 33, 3465–3475 (2024). https://doi.org/10.1007/s11665-023-08224-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08224-6

Keywords

Navigation