Skip to main content
Log in

Modeling the Double-Pass Flow Curve of Nb Micro-Alloyed Steel by Machine Learning and its Extrapolation to Static Softening Kinetics

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper presents a method to predict the double-pass flow stress behavior of hot-rolled niobium (Nb) micro-alloyed steel by combining the constitutive model and back-propagation neural network (BPNN) model (the machine learning (ML) model). The constitutive model is used to predict the first-pass flow stress behavior, and the BPNN model is used to predict the second-pass flow stress behavior. The results show that the ML model can accurately predict the double-pass flow stress behavior at different temperatures and holding time. The second-pass flow stress predicted by the BPNN model is compared with those predicted by the mathematical model in the previous literature. The results show that the BPNN model can more accurately predict the second-pass flow stress than the mathematical model in the previous literature. In addition, the static softening fraction during the interval time is calculated by using the predicted double-pass flow stress curve in this paper. The results show that the precision of the static softening fraction calculated in this paper is not only higher than that of the traditional Avrami kinetic model but also higher than that of the traditional model which couples recovery, precipitation and recrystallization. Therefore, the ML model for predicting the double-pass flow stress behavior has high accuracy and provides a theoretical basis for predicting the double-pass flow stress behavior of other alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

σ 1 :

The flow stress of the work hardened (Eq B1)

σ 0 :

The flow stress of completely softened material (Eq B1)

σ 2 :

The flow stress of partially softened (Eq B1)

ε :

Strain (Eq B1)

\({\dot{\varepsilon }}\) :

Strain rate (Eq B1)

\(D_{\gamma }\) :

Initial austenite grain size (Eq B2)

T :

Deformation temperature (Eq B2)

C Nb :

Nb concentration in steel (Eq B2)

X :

Recrystallization fraction (Eq B3)

σ Rex :

5% Flow stress of the recrystallized portions of the material (Eq B3)

σ Non -Rex :

5% Flow stress of the unrecrystallized portions of the material (Eq B3)

σ Rex -Matrix :

The 5% flow stress evaluated upon reloading using Eq (B2), with the current Nb content of the matrix (Eq B3)

σ UnRex -Matrix :

The contribution from the matrix including dislocation strengthening (Eq B3)

σ ppt :

Precipitation strengthening strength (Eq B4-1)

k :

Shearing constant (Eq. B4-1)

b :

Burgers vector (Eq B4-1)

f V :

Volume fraction of precipitates (Eq B4-1)

R :

The radius of precipitates (Eq B4-1)

k p :

0.8 (Eq B4-2)

k d :

1.1 (Eq B4-2

N(t):

Number of precipitate particles (Eq B5)

M :

Taylor factor (~ 3.1 for FCC) (Eq B5)

α r :

A constant of the order of 0.15 (Eq B5)

U a :

Recovery activation energy, 286 kJ/mol (Eq B5)

V a :

Recovery activation volume (Eq B5)

v d :

Debye frequency, 2 × 1012 s1(Eq B5)

E :

Young’s modulus, 2.06 × 105 MPa (Eq B5)

k B :

Boltzman’s constant, 1.38 × 1023 J/K (Eq B5)

Nc(t) :

Number of dislocation nodes, 0.5ρ(t)1.5(Eq B5)

G(t) :

Net driving force for recrystallization (Eq B6)

N rex :

Number of recrystallization nuclei (Eq B6)

\(\rho \left( t \right)\) :

Dislocation density (Eq B6)

γ gb :

Grain-boundary energy (Eq B6), γgb = 1.3115-0.0005 T

F v (t) :

Volume fraction of precipitated phase (B6)

R(t) :

Average radius of precipitated phase (B6)

M pure :

Grain-boundary mobility of pure material (Eq B6)

δ :

Grain-boundary thickness (B6)

N v :

Number of atoms per unit volume (Eq B6)

E b :

Binding energy of Nb to grain boundaries (Eq B6)

\(D_{gb}^{x}\) :

Average diffusion coefficient of Nb across the Fe grain boundary (Eq B6)

R :

The precipitate radius after a certain time t (Eq B7-1)

R 0 :

The average critical radius of the precipitates that have nucleated during the incubation period, R0≈1.05Rc (Eq B7-1)

\(X_{Nb}^{p}\) :

The concentration of Nb in the precipitate (Eq B7-2)

f :

The equilibrium volume fraction of precipitated phase of composite carbonitride (Eq B8)

M :

The solution concentration of M element in austenite at reheating temperature (Eq B8)

[M]:

The equilibrium concentration of M element in austenite at temperature T (Eq B8)

A M :

The atomic weights of elements M (Eq B8)

A X :

The atomic weights of X (Eq B8)

d Fe :

The densities of iron matrix (Eq B8)

d MXx :

The densities of MXx phase (Eq B8)

σ y :

Yield stress (Eq B9)

References

  1. X.W. Lei, R.B. Yang, J.M. Liu, L.F. Zeng, C.B. Lai, and X. Luo, Solubility Product and Equilibrium Equations of Nonstoichiometric Niobium Carbonitride in Steels: Thermodynamic Calculations, Metall. Mater. Trans. A, 2021, 52(10), p 4402–4412.

    Article  CAS  Google Scholar 

  2. Y. Yang, T.R. Li, T. Jia, Z.D. Wang, and R.D.K. Misra, Dynamic Recrystallization and Flow Behavior in Low Carbon Nb-Ti Microalloyed Steel, Steel Res. Int., 2018, 89(4), p 1700395.

    Article  Google Scholar 

  3. B. Jia and Y. Peng, Constitutive Relationships of Nb Microalloyed Steel During High Temperature Deformation, Acta Metall. Sin., 2011, 47(4), p 507–512.

    CAS  Google Scholar 

  4. G. Kugler and R. Turk, Modeling the Dynamic Recrystallization under Multi-Stage Hot Deformation, Acta Mater., 2004, 52(15), p 4659–4668.

    Article  CAS  Google Scholar 

  5. K. Minami, F. Siciliano Jr., T.M. Maccagno, and J.J. Jonas, Mathematical Modeling of Mean Flow Stress During the Hot Strip Rolling of Nb Steels, ISIJ Int., 1996, 36, p 1507–1515.

    Article  CAS  Google Scholar 

  6. X. Nie, Deformation Behavior and Constitutive Model of AZ31 and GW83 Magnesium Alloy During Double-Pass Isothermal Compression, Shanghai Jiao Tong University, Shanghai, 2020, p 89

    Google Scholar 

  7. X. Nie, S. Dong, F. Wang, L. Jin, and J. Dong, Effects of Holding Time and Zener-Hollomon Parameters on Deformation Behavior of Cast Mg-8Gd-3Y Alloy During Double-Pass Hot Compression, J. Mater. Sci. Technol., 2018, 34(11), p 2035–2041.

    Article  CAS  Google Scholar 

  8. X. Nie, S. Dong, F. Wang, L. Jin, Z. Zhang, J. Dong, and Y. Wang, Flow Behavior and Formability of Hot-Rolled Mg-8gd-3y Alloy under Double-Pass Isothermal Compression, J. Mater. Process. Technol., 2020, 275, p 116328.

    Article  CAS  Google Scholar 

  9. X. Nie, J. Ni, S. Dong, F. Wang, L. Jin, and J. Dong, Preferential Grain Growth and Textural Evolution of Az31b Mg Alloy During Annealing after Isothermal Compression at 400 °C, Mater. Charact., 2020, 169, p 110566.

    Article  CAS  Google Scholar 

  10. D. Wang, R. Zhang, and S. Yuan, Flow Behavior and Microstructure Evolution of a TiBw/TA15 Composite with Network-Distributed Reinforcements During Interrupted Hot Compression, Mater. Sci. Eng. A, 2018, 725, p 428–436.

    Article  CAS  Google Scholar 

  11. R. Zeng, L. Huang, J. Li, H. Li, H. Zhu, and X. Zhang, Quantification of Multiple Softening Processes Occurring During Multi-Stage Thermoforming of High-Strength Steel, Int. J. Plast., 2019, 120, p 64–87.

    Article  CAS  Google Scholar 

  12. H.E. Cho, Y. Hammi, A.L. Bowman, S.-I. Karato, J.R. Baumgardner, and M.F. Horstemeyer, A Unified Static and Dynamic Recrystallization Internal State Variable (ISV) Constitutive Model Coupled with Grain Size Evolution for Metals and Mineral Aggregates, Int. J. Plast., 2018, 112, p 123–157.

    Article  Google Scholar 

  13. S.F. Medina, A. Quispe, and M. Gomez, Model for Static Recrystallisation Critical Temperature in Microalloyed Steels, Mater. Sci. Technol., 2001, 17(5), p 536–544.

    Article  CAS  Google Scholar 

  14. L.P. Karjalainen, T.M. Maccagno, and J.J. Jonas, Softening and Flow Stress Behaviour of Nb Microalloyed Steels During Hot Rolling Simulation, ISIJ Int., 1995, 35(12), p 1523–1531.

    Article  CAS  Google Scholar 

  15. H.S. Zurob, Y. Brechet, and G. Purdy, A Model for the Competition of Precipitation and Recrystallization in Deformed Austenite, Acta Mater., 2001, 49(20), p 4183–4190.

    Article  CAS  Google Scholar 

  16. H.S. Zurob, C.R. Hutchinson, Y. Brechet, and G. Purdy, Modeling Recrystallization of Microalloyed Austenite: Effect of Coupling Recovery Precipitation and Recrystallization, Acta Mater., 2002, 50(12), p 3075–3092.

    Article  CAS  Google Scholar 

  17. J. Tang, F. Jiang, C. Luo, G. Bo, K. Chen, J. Teng, D. Fu, and H. Zhang, Integrated Physically Based Modeling for the Multiple Static Softening Mechanisms Following Multi-Stage Hot Deformation in Al-Zn-Mg-Cu Alloys, Int. J. Plast., 2020, 134, p 102809.

    Article  CAS  Google Scholar 

  18. S.W. Wu, X.G. Zhou, G.M. Cao, Z.Y. Liu, and G.D. Wang, The Improvement on Constitutive Modeling of Nb-Ti Micro Alloyed Steel by Using Intelligent Algorithms, Mater. Des., 2017, 116, p 676–685.

    Article  CAS  Google Scholar 

  19. C. Shen, C. Wang, X. Wei, Y. Li, S. van der Zwaag, and W. Xu, Physical Metallurgy-Guided Machine Learning and Artificial Intelligent Design of Ultrahigh-Strength Stainless Steel, Acta Mater., 2019, 179, p 201–214.

    Article  CAS  Google Scholar 

  20. Z. Wang, L. Zhang, W. Li, Z. Qin, Z. Wang, Z. Li, L. Tan, L. Zhu, F. Liu, H. Han, and L. Jiang, High Throughput Experiment Assisted Discovery of New Ni-Base Superalloys, Scripta Mater., 2020, 178, p 134–138.

    Article  CAS  Google Scholar 

  21. M. Ahmed, O.M. Horst, A. Obaied, I. Steinbach, and I. Roslyakova, Automated Image Analysis for Quantification of Materials Microstructure Evolution, Model. Simul. Mater. Sci., 2021, 29(5), p 055012.

    Article  CAS  Google Scholar 

  22. C. Wang, H. Fu, L. Jiang, D. Xue, and J. Xie, A Property-Oriented Design Strategy for High Performance Copper Alloys Via Machine Learning, Npj Comput. Mater., 2019, 5(1), p 87.

    Article  Google Scholar 

  23. H. Abarghooei, H. Arabi, S.H. Seyedein, and B. Mirzakhani, Modeling of Steady State Hot Flow Behavior of Api-X70 Microalloyed Steel Using Genetic Algorithm and Design of Experiments, Appl. Soft Comput., 2017, 52, p 471–477.

    Article  Google Scholar 

  24. S. Kumar, S. Kumar, R. Prakash, M.K.T. Shankar, and S.B. Kumar, Prediction of Flow Stress for Carbon Steels Using Recurrent Self-Organizing Neuro Fuzzy Networks, Expert Syst. Appl., 2007, 32(3), p 777–788.

    Article  Google Scholar 

  25. G.Z. Quan, J.T. Liang, W.Q. Lv, D.S. Wu, Y.Y. Liu, G.C. Luo, and J. Zhou, A Characterization for the Constitutive Relationships of 42CrMo High Strength Steel by Artificial Neural Network and Its Application in Isothermal Deformation, Mater. Res., 2014, 17(5), p 1102–1114.

    Article  Google Scholar 

  26. L. Cheng, H. Chang, B. Tang, H.C. Kou, and J.S. Li, Flow Stress Prediction of High-Nb Ti Al Alloys under High Temperature Deformation, Adv. Mater. Res., 2012, 510, p 723–728.

    Article  CAS  Google Scholar 

  27. X. Ma, W. Zeng, Y. Sun, K. Wang, Y. Lai, and Y. Zhou, Modeling Constitutive Relationship of Ti17 Titanium Alloy with Lamellar Starting Microstructure, Mater. Sci. Eng. A, 2012, 538, p 182–189.

    Article  CAS  Google Scholar 

  28. N. Kotkunde, A.D. Deole, A.K. Gupta, and S.K. Singh, Comparative Study of Constitutive Modeling for Ti-6Al-4V Alloy at Low Strain Rates and Elevated Temperatures, Mater. Des., 2014, 55, p 999–1005.

    Article  CAS  Google Scholar 

  29. G. Srinivasu, R.N. Rao, T.K. Nandy, and A. Bhattacharjee, Artificial Neural Network Approach for Prediction of Titanium Alloy Stress-Strain Curve, Procedia Eng., 2012, 38, p 3709–3714.

    Article  CAS  Google Scholar 

  30. Y. Sun, L. Hu, and J. Ren, Modeling the Constitutive Relationship of Powder Metallurgy Ti-47Al-2Nb-2Cr Alloy during Hot Deformation, J. Mater. Eng. Perform., 2015, 24(3), p 1313–1321.

    Article  CAS  Google Scholar 

  31. A.I. Fernandez, B. Lopez, and J.M. Rodrıguez-Ibabe, Relationship between the Austenite Recrystallization Fraction and the Softening Measured from the Interrupted Torsion Test Technique, Scripta Mater., 1999, 40, p 543–549.

    Article  CAS  Google Scholar 

  32. M. Detrois, S. Antonov, S. Tin, P.D. Jablonski, and J.A. Hawk, Hot Deformation Behavior and Flow Stress Modeling of a Ni-Based Superalloy, Mater. Charact., 2019, 157, p 109915.

    Article  CAS  Google Scholar 

  33. J.H. Zhou and K.Z. Guan, Resistance to Plastic Deformation of Metals, 1989 (Beijing), Machinery Industry Press, Beijing, 1989, p 20–51

    Google Scholar 

  34. X. Li, X.G. Zhou, G.M. Cao, S.H. Xu, Y. Wang, and Z.Y. Liu, Machine Learning Hot Deformation Behavior of Nb Micro-Alloyed Steels and Its Extrapolation to Dynamic Recrystallization Kinetics, Metall. Mater. Trans. A, 2021, 52, p 3171–3181.

    Article  CAS  Google Scholar 

  35. M.J. Zhao, L. Huang, R. Zeng, D.X. Wen, H.L. Su, and J.J. Li, In-situ Observations and Modeling of Static Recrystallization in 300 M Steel, Mat. Sci. Eng. A, 2019, 765, p 138300.

    Article  CAS  Google Scholar 

  36. A. Yoshie, T. Fujita, M. Fujioka, K. Okamo, and H. Morikaw, Formulation of Flow Stress of Nb Added Steels by Considering Work-Hardening and Dynamic Recovery, ISIJ Int., 1996, 36(4), p 467–473.

    Article  Google Scholar 

  37. C.A. Hernandezi, S.F. Medina, and J. Ruiz, Modelling Austenite Flow Curves in Low Alloy and Microalloyed Steels, Acta Mater., 1996, 44, p 155–163.

    Article  Google Scholar 

  38. A. Karmakara, S. Biswasa, S. Mukherjee, D. Chakrabartia, and V. Kumar, Effect of Composition and Thermo-Mechanical Processing Schedule on the Microstructure, Precipitation and Strengthening of Nb-Microalloyed Steel, Mater. Sci. Eng. A, 2017, 690, p 158–169.

    Article  Google Scholar 

  39. A. Laasraoui and J. Jonas, Prediction of Temperature Distribution, Flow Stress and Microstructure During the Multipass Hot Rolling of Steel Plate and Strip, ISIJ Int., 1991, 31(1), p 95–105.

    Article  Google Scholar 

  40. K.B. Kang, O. Kwon, W.B. Lee, and C.G. Park, Effect of Precipitation on the Recrystallization Behavior of a Nb Containing Steel, Scripta Mater., 1997, 36(11), p 1303–1308.

    Article  CAS  Google Scholar 

  41. Y.B. Cao, F.R. Xiao, G.Y. Qiao, C.J. Huang, X.B. Zhang, Z.X. Wu, and B. Liao, Strain-Induced Precipitation and Softening Behaviors of High Nb Microalloyed Steels, Mater. Sci. Eng. A, 2012, 552, p 502–513.

    Article  CAS  Google Scholar 

  42. S. Liang, F. Fazeli, and H.S. Zurob, Effects of Solutes and Temperature on High-Temperature Deformation and Subsequent Recovery in Hot-Rolled Low Alloy Steels, Mater. Sci. Eng. A, 2019, 765, p 138324.

    Article  CAS  Google Scholar 

  43. S.F. Medina, P. Valles, J. Calvo, and J.M. Cabrera, Nucleation and Growth of Precipitates in a V-Microalloyed Steel According to Physical Theory and Experimental Results, Phys. Met. Metallogr., 2020, 121(1), p 32–40.

    Article  CAS  Google Scholar 

  44. B. Dutta, E.J. Palmiere, and C.M. Sellars, Modelling the Kinetics of Strain Induced Precipitation in Nb Microalloyed Steels, Acta Mater., 2001, 49(5), p 785–794.

    Article  CAS  Google Scholar 

  45. Q.L. Yong, Secondary Phases in Steels, Metallurgical Industry Press, Beijing, 2006, p 161–165

    Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge the financial supports from Ministry of Science and Technology, China (No. 2021YFB3702404), the project from Liaoning Province (No. XLYC1902034) and directional items of Liaoning National Science and Technology Award (2022JH25/10200001), Postdoctoral Science Foundation of China (2022T150205) and Postdoctoral Research Fund for Northeastern University (20210203), and National Natural Science Foundation of China (52104370).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoguang Zhou or Zhenyu Liu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Hernandez’s Model for Calculating Flow Stress

$$\left\{ \begin{gathered} \sigma = \sigma^{\prime} - \Delta \sigma \hfill \\ \sigma^{\prime} = B\left[ {1 - \exp \left( { - C\varepsilon } \right)} \right]^{m} \hfill \\ \Delta \sigma = B^{\prime}\left( {1 - \exp \left[ { - k\left( {\frac{{\varepsilon - a\varepsilon_{p} }}{{\varepsilon_{p} }}} \right)^{{m^{\prime}}} } \right]} \right) \hfill \\ B = \left( {9.5326 + 0.6196\ln \left( \frac{Z}{A} \right)} \right)^{2} \left( {{\text{MPa}}} \right) \hfill \\ C = 3.9202\left( \frac{Z}{A} \right)^{0.0592} \hfill \\ m = 0.3449\exp \left( {0.0139\sqrt{\frac{Z}{A}} } \right) \hfill \\ B^{\prime} = 26.0310\left( \frac{Z}{A} \right)^{0.1351} \left( {{\text{MPa}}} \right) \hfill \\ k = 0.5974\exp \left[ {1.2333\left( \frac{Z}{A} \right)^{{ - \frac{1}{2}}} } \right] \hfill \\ m^{\prime} = 1.0901\exp \left( {0.0264\sqrt{\frac{Z}{A}} } \right) \hfill \\ \varepsilon_{p} = 0.0952D_{0}^{0.195} \left( {\sqrt{\frac{Z}{A}} } \right)^{0.159} \hfill \\ Q = 267000 - 2535.52 \times {\text{C}}\% + 1010 \times {\text{Mn}}\% + 33620.76 \times {\text{Si}}\% + 36651.28 \times {\text{Mo}}\% \hfill \\ \quad \quad + 93680.52 \times {\text{Ti}}\%^{0.05919} + 31673.46 \times {\text{V}}\% + 70729.85 \times {\text{Nb}}\%^{0.5679} \left( {{\text{J}}/{\text{mol}}} \right) \hfill \\ A = \left[ {12.197 + 65.590 \times {\text{C}}\% - 49.052 \times {\text{Nb}}\% } \right]\exp \left( {7.076 \times 10^{ - 5} Q} \right)\left( {{\text{s}}^{ - 1} } \right) \hfill \\ \end{gathered} \right.$$
(A1)

Appendix B The Conventional Model for Calculating the Static Softening Fraction Coupling Recovery, Precipitation and Recrystallization

See in Table

Table 2 The conventional model coupling recovery, precipitation and recrystallization (Ref 16)

2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Jiang, Q., Zhou, X. et al. Modeling the Double-Pass Flow Curve of Nb Micro-Alloyed Steel by Machine Learning and its Extrapolation to Static Softening Kinetics. J. of Materi Eng and Perform 33, 3669–3679 (2024). https://doi.org/10.1007/s11665-023-08221-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08221-9

Keywords

Navigation