Skip to main content
Log in

Deformation Mechanism and Microstructural Evolution of a Mg–Y–Nd–Zr Alloy under High Strain Rate at Room Temperature

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of strain rate on the microstructure and deformation mechanism of a Mg–Y–Nd–Zr alloy was studied. The microstructure and texture were examined by optical microscopy and electron backscatter diffraction, and the dislocation structures were observed by transmission electron microscopy. The results showed that the Mg–Y–Nd–Zr alloy exhibited positive strain rate sensitivity under high-strain-rate compression. At a strain rate of 830 s−1, many grains were re-oriented owing to the formation of a large number of tensile twins in the specimen. With increasing strain rate, the number of extension twins decreased, but those of contraction twins, double twins, and < c + a > dislocations increased. The dominant deformation mechanism of the material changed from extension twin-dominated deformation to extension twin- and < c + a > slip-dominated deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Dwain and A. Magers, Global Review of Magnesium Parts in Automobiles, Light Metal Age, 1996, 54(9), p 60–63.

    Google Scholar 

  2. Z. Wu and W.A. Curtin, The Origins of High Hardening and Low Ductility in Magnesium, Nature, 2015, 526(7571), p 62.

    Article  CAS  PubMed  Google Scholar 

  3. K.T. Ramesh and R.S. Coates, Microstructural Influences on the Dynamic Response of Tungsten Heavy Alloys, Med. Clin., 1992, 84(14), p 549–553.

    Google Scholar 

  4. M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet, S. Blacket, T. Hilditch , and P. Beggs, Magnesium Alloy Applications in Automotive Structures, Jom, 2008, 60(11), p 57–62.

    Article  CAS  Google Scholar 

  5. Q. Li, Mechanical Properties and Microscopic Deformation Mechanism of Polycrystalline Magnesium Under High-Strain-Rate Compressive Loadings, Mater. Sci. Eng. A, 2012, 540(Apr.1), p 130–134.

    Article  CAS  Google Scholar 

  6. B. Hutchinson, M.R. Barnett, A. Ghaderi, P. Cizek , and I. Sabirov, Deformation Modes and Anisotropy in Magnesium Alloy AZ31, Int. J. Mater. Res., 2009, 100(4), p 556–563.

    Article  CAS  Google Scholar 

  7. S. You, Y. Huang, K.U. Kainer , and N. Hort, Recent Research and Developments on Wrought Magnesium Alloys, J. Magn. Alloy., 2017, 5(3), p 239–253.

    Article  CAS  Google Scholar 

  8. E.W. Kelley and J.W.F. Hosford, The Deformation Characteristics of Textured Magnesium, Trans. Metall. Soc. Aime, 1968, 242, p 654–660.

    CAS  Google Scholar 

  9. G.Y. Chin and W.L. Mammel, Competition Among Basal, prism, and Pyramidal Slip Modes in HCP Metals, Metall. Mater. Trans. B, 1970, 1(2), p 357–361.

    Article  CAS  Google Scholar 

  10. M.R. Barnett, Z. Keshavarz, A.G. Beer , and D. Atwell, Influence of Grain Size on Compressive Deformation of Wrought Mg-3Al-1Zn, Acta. Mater., Acta. Materialia, 2004, 52(17), p 5093–5103.

    Article  CAS  Google Scholar 

  11. T. Xu, Y. Yang, X. Peng, J. Song , and F. Pan, Overview of Advancement and Development Trend on Magnesium Alloy, J. Magn. Alloys, 2019, 7(3), p 536–544.

    Article  CAS  Google Scholar 

  12. A. Akhtar and E. Teghtsoonian, Solid Solution Strengthening of Magnesium Single Crystals—ii the Effect of Solute on the Ease of Prismatic Slip, Acta Metall., 1969, 17(11), p 1351–1356.

    Article  CAS  Google Scholar 

  13. M.R. Barnett, Twinning and the Ductility of Magnesium Alloys: Part I: “Tension” Twins, Mater. Sci. Eng. A, 2007, 464(1–2), p 1–7.

    Article  Google Scholar 

  14. M.R. Barnett, Twinning and the Ductility of Magnesium Alloys: Part II “Contraction” Twins, Mater. Sci. Eng. A, 2007, 464(1–2), p 8–16.

    Article  Google Scholar 

  15. H. Yoshinaga and R. Horiuchi, Deformation Mechanisms in Magnesium Single Crystals Compressed in the Direction Parallel to Hexagonal Axis, Mater. Trans., JIM, 1963, 4(1), p 1–8.

    Article  CAS  Google Scholar 

  16. H. Yoshinaga and R. Horiuchi, On the Nonbasal Slip in Magnesium Crystals, Trans. Japan Instit. Metals, 1964, 5(1), p 14–21.

    Article  CAS  Google Scholar 

  17. E.W. Kelley and W.F. Hosford, Plane-Strain Compression of Magnesium and Magnesium Alloy Crystals, Trans. Met. Soc. AIME., 1986, 242(1), p 5–13.

    Google Scholar 

  18. S.R. Agnew, J.A. Horton , and M.H. Yoo, Transmission Electron Microscopy Investigation of <c+a> Dislocations in Mg and α-solid Solution Mg-Li Alloys, Metall. Mater. Trans. A, 2002, 33(3), p 851–858.

    Article  Google Scholar 

  19. O. Muransky, D.G. Carr, M.R. Barnett, E.C. Oliver , and P. Sittner, Investigation of Deformation Mechanisms Involved in the Plasticity of AZ31 Mg alloy: In situ Neutron Diffraction and EPSC Modelling, Mater. Ence Eng. A, 2008, 496(1–2), p 14–24.

    Article  Google Scholar 

  20. A.S. Khan, A. Pandey, T. GnäUpel-Herold , and R.K. Mishra, Mechanical Response and Texture Evolution of AZ31 Alloy at Large Strains for Different Strain Rates and Temperatures, Int. J. Plasticity, 2011, 27(5), p 688–706.

    Article  CAS  Google Scholar 

  21. H. Asgari, A.G. Odeshi , and J.A. Szpunar, On Dynamic Deformation Behavior of WE43 Magnesium Alloy Sheet Under Shock Loading Conditions, Mater. Design, 2014, 63(Nov), p 552–564.

    Article  CAS  Google Scholar 

  22. K.A. Dannemann, V.B. Chalivendra , and B. Song, Dynamic Behavior of Materials, Exp. Mech., 2012, 52(2), p 117–118.

    Article  Google Scholar 

  23. N. Dixit, K.Y. Xie, K.J. Hemker , and K.T. Ramesh, Microstructural Evolution of Pure Magnesium Under High Strain Rate Loading, Acta Mater., 2015, 87, p 56–67.

    Article  CAS  Google Scholar 

  24. N.V. Dudamell, I. Ulacia, F. Gálvez, S. Yi , and M.T. Pérez-Prado, Twinning and Grain Subdivision During Dynamic Deformation of a Mg AZ31 Sheet Alloy at Room Temperature, Acta Mater., 2011, 59(18), p 6949–6962.

    Article  CAS  Google Scholar 

  25. L. Li, O. Muránsky, E.A. Flores-Johnson, S. Kabra, L. Shen , and Gl. Proust, Effects of Strain Rate on the Microstructure Evolution and Mechanical Response of Magnesium Alloy AZ31, Mater. Sci. Eng. A, 2016 https://doi.org/10.1016/j.msea.2016.12.015

    Article  Google Scholar 

  26. C. Linbo, L. Wei, S. Yidan , and L. Mei, Effect of Microstructure Evolution on the Mechanical Properties of a Mg–Y–Nd–Zr Alloy with a Gradient Nanostructure Produced via Ultrasonic Surface Rolling Processing, J. Alloy Compd., 2022, 923, p 166495.

    Article  Google Scholar 

  27. W. Tang, Z. Liu, S. Liu, L. Zhou, P. Mao, H. Guo , and X. Sheng, Deformation Mechanism of Fine Grained Mg–7Gd–5Y–1.2Nd–0.5Zr Alloy Under High Temperature and High Strain Rates, J. Magn. Alloys, 2020, 8(4), p 1144–1153.

    Article  CAS  Google Scholar 

  28. Y. Tan, W. Li, W. Hu, X. Shi , and L. Tian, The Effect of ECAP Temperature on the Microstructure 18 and Properties of a Rolled Rare Earth Magnesium Alloy, Materials, 2019, 12, p 1554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. L. Aiwen, L. Wei, L. Mei, Y. Hongmin, S. Yidan , and L. Yilong, Effect of Grain Size on the Microstructure and Deformation Mechanism of Mg-2Y-0.6Nd-0.6Zr Alloy at a High Strain Rate, J. Mater. Sci. Eng. A, 2021, 824, p 141774.

    Article  Google Scholar 

  30. W.G. Feather et al., Mechanical Response, twinning, and Texture Evolution of WE43 Magnesium-Rare Earth Alloy as a Function of Strain Rate: Experiments and Multi-level Crystal Plasticity Modeling, Int. J. Plast, 2019, 120, p 180–204.

    Article  CAS  Google Scholar 

  31. N. Dixit et al., Microstructural Evolution of Pure Magnesium Under High Strain Rate Loading, Acta Mater., 2015, 87, p 56–67.

    Article  CAS  Google Scholar 

  32. J. Koike, Enhanced Deformation Mechanisms by Anisotropic Plasticity in Polycrystalline Mg Alloys at Room Temperature, Metall. Mater. Trans. A, 2005, 36(7), p 1689–1696.

    Article  Google Scholar 

  33. N.S. Barnett, Effect of Composition on the Texture and Deformation Behaviour of Wrought Mg Alloys, Scripta Materialia, 2008, 58(3), p 179–182.

    Article  Google Scholar 

  34. B.Q. Shi, R.S. Chen , and W. Ke, Effects of Yttrium and Zinc on the Texture, Microstructure and Tensile Properties of Hot-Rolled Magnesium Plates, Mater. Sci. Eng: A, 2013, 560(JAN10), p 62–70.

    Article  CAS  Google Scholar 

  35. S.G. Hong, S.H. Park , and S.L. Chong, Role of 10–12 Twinning Characteristics in the Deformation Behavior of a Polycrystalline Magnesium Alloy, Acta. Mater., 2010, 58(18), p 5873–5885.

    Article  CAS  Google Scholar 

  36. P.R. Okamoto and G. Thomas, On the Four-axis Hexagonal Reciprocal Lattice and its use in the Indexing of Transmission Electron Diffraction Patterns, Phys. Status. Solidi., 2010, 25(1), p 81–91.

    Article  Google Scholar 

  37. S.S. Bes, M. Friák, S. Zaefferer, A. Dick , and D. Raabe, The Relation Between Ductility and Stacking Fault Energies in Mg and Mg-Y Alloys, Acta Mater., 2012, 60, p 3011–3021.

    Article  Google Scholar 

  38. R. Korla and A.H. Chokshi, Strain-Rate Sensitivity and Microstructural Evolution in a Mg–Al–Zn Alloy, Scripta Mater., 2010, 63(9), p 913–916.

    Article  CAS  Google Scholar 

  39. M.R. Barnett, Z.K.P.D. Student , and X. Ma, A Semianalytical Sachs Model for the Flow Stress of a Magnesium Alloy, Metall. Mater. Trans. A, 2006, 37(7), p 2283–2293.

    Article  Google Scholar 

  40. J. Lan, J.J. Jonas, A.A. Luo, A.K. Sachdev , and S. Godet, Influence of 10–12 Extension Twinning on the Flow Behavior of AZ31 Mg Alloy, Mater. Sci. Eng. A, 2007, 445–446, p 302–309.

    Google Scholar 

  41. Y.N. Wang and J.C. Huang, The Role of Twinning and Untwinning in Yielding Behavior in Hot-Extruded Mg–Al–Zn Alloy, Acta Mater., 2007, 55(3), p 897–905.

    Article  CAS  Google Scholar 

  42. B.-Y. Liu, F. Liu, N. Yang, X.-B. Zhai, L. Zhang, Y. Yang, B. Li, J. Li, E. Ma , and J.-F. Nie, Large Plasticity in Magnesium Mediated by Pyramidal Dislocations, Science, 2019, 365(6448), p 73–75.

    Article  CAS  PubMed  Google Scholar 

  43. X. Wang, L. Jiang, A. Luo, J. Song, Z. Liu, F. Yin, Q. Han, S. Yue , and J.J. Jonas, Deformation of Twins in a Magnesium Alloy Under Tension at Room Temperature, J. Alloys Compd., 2014, 594, p 44–47.

    Article  CAS  Google Scholar 

  44. P. Mao, L. Zheng , and C. Wang, Texture Effect on High Strain Rates Tension and Compression Deformation Behavior of Extruded AM30 Alloy, Mater. Sci. Eng. A, 2012, 539(Mar30), p 13–21.

    Article  CAS  Google Scholar 

  45. S. Xu, T. Liu, H. Chen, Z. Miao, Z. Zhang , and W. Zeng, Reducing the Tension–Compression Yield Asymmetry in a Hot-Rolled Mg–3Al–1Zn Alloy via Multidirectional Pre-Compression, Mater. Sci. Eng. A, 2013, 565, p 96–101.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (51661007), Guizhou University cultivation project [2019] 15, central government guide local science and technology development special projects [2019] 4011.

Author information

Authors and Affiliations

Authors

Contributions

GD Writing – original draft. AL Investigation. WL Writing – review & editing, Supervision. GC Software. YL Visualization.

Corresponding author

Correspondence to Wei Li.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, G., Li, A., Li, W. et al. Deformation Mechanism and Microstructural Evolution of a Mg–Y–Nd–Zr Alloy under High Strain Rate at Room Temperature. J. of Materi Eng and Perform 33, 3101–3114 (2024). https://doi.org/10.1007/s11665-023-08192-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08192-x

Keywords

Navigation